
PHYSICAL REVIEW A 97, 043606 (2018)

Geometric representation of spin correlations and applications to ultracold systems
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We provide a one-to-one map between the spin correlations and certain three-dimensional shapes, analogous to
the map between single spins and Bloch vectors, and demonstrate its utility. Much as one can reason geometrically
about dynamics using a Bloch vector—e.g., a magnetic field causes it to precess and dissipation causes it to
shrink—one can reason similarly about the shapes we use to visualize correlations. This visualization demonstrates
its usefulness by unveiling the hidden structure in the correlations. For example, seemingly complex correlation
dynamics can be described as simple motions of the shapes. We demonstrate the simplicity of the dynamics,
which is obscured in conventional analyses, by analyzing several physical systems of relevance to cold atoms.

DOI: 10.1103/PhysRevA.97.043606

I. INTRODUCTION

Correlations play an important role in all branches of sci-
ence. They determine the distribution of galaxies in cosmology
[1], reveal the complex structure of molecules and proteins in
chemistry and biology [2,3], are invaluable in quantum sensing
and computing in the form of quantum entanglement [4–10],
and are used to test fundamental predictions of quantum
chromodynamics (QCD) about entangled quark pairs [11,12].
In particular, correlations are of fundamental interest in many-
body physics as they characterize phases in condensed matter
[13–15] and in ultracold matter [16–23].

However, even the simplest correlations in many-body
systems have considerable complexity. For example, con-
sider correlations between two spin-1/2s, as illustrated in
Fig. 1(a). The correlations between each pair of spins i

and j are described by 〈σα
i σ

β

j 〉, with α,β ∈ {x,y,z}, and
therefore require nine components to specify. Furthermore,
as Fig. 1(b) illustrates, the behavior of these components can
be complicated and seemingly structureless. Similarly, other
standard visualizations such as density matrix tomography
plots [Fig. 1(c)] fail to reveal any obvious structure.

In this paper, we provide a method that encodes all of
the correlation components holistically in a geometric object.
We demonstrate that seemingly complicated, structureless
dynamics is in fact simple motions of these geometric shapes
for several examples of many-body systems. For example, our
visualization in Fig. 1(d) reveals the superficially complicated
dynamics of Figs. 1(b) and 1(c) to be a simple growth and
rotation of an object in the shape of a clover. Our examples are
drawn from recent experiments in ultracold matter, including
lattice fermions [24,25], Rydberg atoms [26–29], molecules
[30–32], and trapped ions [33–37], but the visualization tech-
niques are completely general.

Our work is not the first to consider geometric visualiza-
tions of spin correlations, but builds on the useful tools in
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Refs. [38–60]. Although we provide different methods (see
Sec. III) to interpret the shapes, such as how to read off
correlations from the shapes, our constructions is in essence
equivalent to that in Refs. [53–56]. However, these prior studies
considered quantum states chosen at random or for illustrative
purposes. In contrast, we apply these tools to two-particle
correlations in real many-body systems. In doing so, we show
that not only are the shapes a compact way to summarize the
spin components, but also that physical phenomena which
appear complicated and mysterious when considering their
components are simple, easy-to-describe motions when visu-
alized geometrically.

This paper first presents, in Sec. II, the prescription for gen-
erating the visualizations. Section III discusses how to interpret
these correlation matrix visualizations (CMVs), whose size
and color convey the magnitude and sign of the correlations.
Its main goal is to give a feeling for the CMVs and how to use
them by first applying them to simple example states, where
the states’ properties are familiar from other methods. It shows
how these familiar properties appear in the CMVs and gives
a general prescription for “reading” them. Section IV applies
our visualization techniques to different scenarios where the
correlations are much less obvious and unveils a structure that
is not apparent in these other representations of correlations.
We visualize correlations of systems, both in nonequilibrium
and equilibrium, that are relevant to ultracold matter. It shows
that in all cases, the visualizations provide an especially
simple representation of the behavior. Although we focus on
two-particle correlations that are symmetric, our method can
be generalized to include more spins and allow asymmetric
correlations, as briefly explained in Appendices A and B.

II. RECIPE FOR GENERATING A CORRELATION
MATRIX VISUAL (CMV)

We are interested in visualizing the two-point connected
spin correlations. Accordingly, we define the one-spin and two-
spin observables. The single spin Bloch vector is

bi = (
bx

i ,b
y

i ,b
z
i

) = (〈
σx

i

〉
,
〈
σ

y

i

〉
,
〈
σ z

i

〉) = 〈σ i〉, (1)
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FIG. 1. Unveiling of hidden structure in correlations by our
visualization method. (a) Correlations in a many-body system of
spin-1/2s. Green arrows are the Bloch vectors of each spin. (b)
Complicated evolution of spin correlation components C

αβ

ij vs time
with α,β = x,y,z and i,j index the spins. (This example is calcu-
lated for Ising dynamics, discussed in Sec. IV A.) (c) Tomographic
representation of the two-spin density matrix for the same dynamics,
showing 〈ab|ρ|cd〉 for {a,b,c,d} ∈ {↑,↓}. (d) Our visualization
method [correlation matrix visualization (CMV)] applied to the same
dynamics reveals that the complicated components hide a very simple
dynamics: a “clover” shape grows in a plane perpendicular to the
Bloch vector and rotates.

where i labels the particle and σx,y,z are the Pauli operators.
The correlations between a pair of spins i and j are

cij =

⎛
⎜⎝

cxx
ij c

xy

ij cxz
ij

c
yx

ij c
yy

ij c
yz

ij

czx
ij c

zy

ij czz
ij

⎞
⎟⎠, (2)

where c
μν

ij = 〈σμ

i σ ν
j 〉 and μ,ν ∈ {x,y,z}. The connected cor-

relations are

C
μν

ij = c
μν

ij − b
μ

i bν
j . (3)

Matrix elements C
μν

ij are real for i �= j . To obtain a geometric
visualization of the correlation matrix Cij , our first step is to

relate it to the quadratic form

Q(Cij ,r) = rT Cij r =
∑

μ,ν∈{x,y,z}
C

μν

ij rμrν, (4)

where r = (x,y,z). One can visualize a quadratic form through
its level sets (surfaces of constant value). This visualization has
the drawback that the level sets of some quadratic forms are not
compact (e.g., a hyperboloid) and thus not easily represented
in a finite space. To associate a finite object with each quadratic
form, we plot the level sets of

Qf (Cij ,r) = Q(Cij ,r)

(1 + r2)3/2
. (5)

The choice of denominator is fairly arbitrary and other choices,
such as multiplying Q by e−r , could be made. We find that the
choice in Eq. (5) gives a large dynamic range across which it
keeps the figure size roughly proportional to the size of the
correlations (Appendix D). We plot a level set (in red) where
Qf attains a given positive value P , and another (in blue)
where it attains −P . We typically choose P = 0.01. We refer
to this picture of level sets as a correlation matrix visualization
(CMV).

This method of visualization is sensitive only to the symmet-
ric part of the correlation matrix. Many important correlation
matrices are symmetric; for example, correlation matrices are
symmetric in translationally invariant systems, the case we
consider in this paper. For such symmetric correlations, Qij is
in one-to-one correspondence with Cij . In this case, the CMVs
are equivalent to the correlation matrices. Generalizations of
our scheme to visualize N -body correlations are discussed in
Appendices B and C, and to visualize asymmetric correlation
matrices in Appendix A. Although we work primarily with
connected correlations Cij , our scheme works just as well for
correlations cij .

Furthermore, there is a one-to-one correspondence between
the connected correlation matrix together with the Bloch
vectors and the reduced two-spin density matrix ρij . This can
be written in terms of the Pauli matrices as

ρij = 1

4

3∑
α,β=0

S
αβ

ij σ α
i ⊗ σ

β

j , (6)

where σα ∈ {11,σ x,σ y,σ z} and S
αβ

ij = Tr(ρijσ
α
i ⊗ σ

β

j ), giving

Sij =

⎛
⎜⎜⎜⎝

1 bx
i b

y

i bz
i

bx
j cxx

ij c
xy

ij cxz
ij

b
y

j c
yx

ij c
yy

ij c
yz

ij

bz
j czx

ij c
zy

ij czz
ij

⎞
⎟⎟⎟⎠. (7)

Consequently, these three things are equivalent (still under the
assumption that the correlation matrix is symmetric): (1) the
CMV along with the Bloch vectors, (2) the correlation matrix
Cij along with the Bloch vectors, and (3) the two-spin density
matrix. We will see that examining the CMVs makes apparent
physics that is hidden in the latter two representations.

III. HOW TO READ A CMV

In this section, we discuss two essential aspects: how to
read a CMV and how to characterize it. One of the biggest
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(b) (c)(a)

{λ1, λ2, λ3} = {0, 1, 0} {λ1, λ2, λ3} = {1, 1, 0} {λ1, λ2, λ3} = {1, 1,−1}, {1,−1, 0} , {−1,−1,−1}

FIG. 2. CMV shapes: The shape of the CMV is determined by the set of nonzero eigenvalues {λ1,λ2,λ3} of the correlation matrix Cij and
their relative signs. Positive (negative) correlations are depicted as red (blue) CMV surfaces. (a) CMVs with a single nonzero eigenvalue (rank-1
CMVs) are dumbbells. (b) Rank-2 CMVs occur in two possible topologies. If the eigenvalues’ signs are equal, one obtains a “disk” of either
color (left), while if their signs are opposite, one obtains a “clover” shape (right). (c) Rank-3 CMVs occur in two possible topologies. If all
of the eigenvalues’ signs are equal, the CMV is a sphere; if one eigenvalue has a sign opposite the other two, one obtains a “wheel-and-axle”
shape.

advantages of our visualization is that one can deduce the
magnitude of the correlations along any direction directly
from the size of the CMV in that direction. The connected
correlations between a pair of spins along a direction e is given
as

〈(σ i · e)(σ j · e)〉 − 〈σ i · e〉〈σ j · e〉
=

∑
μ,ν∈{x,y,z}

〈(
σ

μ

i eμ
)(

σ ν
j eν

)〉 − 〈
σ

μ

i eμ
〉〈
σ ν

j eν
〉

= eT C
μν

ij e

= Q(Cij ,e). (8)

When Q(Cij ,e) is large in absolute value, the CMV (with
the appropriate sign) will be large in this direction as well
(see Appendix D). Consequently, one can read off the size of
correlations along a certain direction by the size of the CMV
in that direction.

Using this geometric interpretation, we now proceed to
interpret the CMVs in Fig. 2. For example, consider the
dumbbell-like CMV in Fig. 2(a) lying along the x axis. This
CMV has its largest correlations along a line parallel to the x

axis which passes through its center. More specifically, Cxx �=
0 while Cyy = Czz = 0. Similarly, consider the clover-shaped
CMV in Fig. 2(b). Visually one can infer that Cxx,Cyy �= 0,
but the correlation along a line 45◦ rotated from x in xy

plane is zero. Finally, the sphere in Fig. 2(c) indicates that
the correlation components are rotationally symmetric. Also
note that we have chosen the origin arbitrarily in order to make
the CMVs easier to see.

The shape and color of a CMV can be related to the
eigenvalues of the correlation matrix. By shape we mean
geometrical properties of the CMV that are invariant under
rotation. Let us therefore consider a rotation matrix R that
rotates our original CMV such that r′ = Rr. Then,

Q(Cij ,r′) = (Rr)T Cij (Rr) = rT (RT CijR)r = Q(C ′
ij ,r),

(9)

where we define C ′
ij = RT CijR. In other words, two CMVs

that are related by a rotation R are associated with correlation
matrices C1 and C2 that are similar to each other under R (and
thus have the same eigenvalues). The converse is also true.
That is, if we have two correlation matrices that are related
by rotations, then they are represented by CMVs that have the

same shape, but different orientations. As an example, the Bell
states (|φ±〉,|ψ+〉), which are shown in Fig. 3(a), illustrate the
physical significance of this rotational equivalence. Each of
these CMVs can be rotated to any other because these three
Bell states are equivalent under global rotations. The symmetry
of each CMV and their relation to each other simply reflect the
symmetry of the corresponding wave functions.

Although the topology and colors are the most visually
apparent features of the CMV, they do not uniquely describe a
state. Other aspects such as the size of the CMV and the corre-
sponding Bloch vectors are also needed to specify even the two-
spin density matrix. In addition, the CMV representation for a
two-spin correlation of a many-body system does not uniquely
specify the many-body state. For example, two distinct three-
spin states can have identical pairwise correlations, but are
distinguished by their three-body correlations. We see this
when we compare the CMV of the two-particle correlation
for a three-particle GHZ state with that of the mixed states in
Figs. 3(b) and 3(d), respectively, where both have the dumbbell
topology but differ only in size. The same is true when we

|φ+

|ψ+ |ψ−

(a) (b)

(c)

|φ−

(d)

W state

GHZ state

Bell states Mixture states

(e)

FIG. 3. CMVs for prototypical states from the density ma-
trix, ρ = |
〉〈
|: (a) Bell states |
〉 = |φ±〉 = (| ↓↓〉 ± | ↑↑〉)/√2,
Bell states |
〉 = |ψ±〉 = (| ↓↑〉 ± | ↑↓〉)/√2; (b) Two-spin corre-
lations in a three-spin GHZ state, |
〉 = (| ↓↓↓〉 + | ↑↑↑〉)/√2;
(c) Two-spin correlations in a three-spin W state, |
〉 =
(| ↓↓↑〉 + | ↓↑↓〉 + | ↑↓↓〉)/√3. CMVs for simple mixtures of
product states: (d) ρ = (| ↓↓〉〈↓↓ | + | ↑↑〉〈↑↑ |)/2 and (e) ρ =
(| ↓↑〉〈↓↑ | + | ↑↓〉〈↑↓ |)/2.
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compare the three Bell states (|φ±〉,|ψ+〉) with the W state.
The Bloch vectors are not explicitly shown in Fig. 3. They are
zero for all the states except for the W state.

IV. CMVs FOR PHYSICALLY REALIZABLE SPIN MODELS

Here we calculate and describe the CMVs that arise in pro-
totypical many-body systems. We focus on a few examples that
are motivated by experiments on ultracold matter. In particular,
we consider the nonequilibrium dynamics in the Ising model
evolved from a product-state ferromagnet (Secs. IV A and
IV B), the dynamics of the Fermi-Hubbard model (Sec. IV C)
evolved from a product-state canted antiferromagnet, and the
equilibrium correlations of the transverse-field Ising model
across its phase diagram (Sec. IV D). All of these models have
been realized in ongoing experiments, as briefly described
in their respective sections. Conveniently, they also can be
solved exactly. We focus on one-dimensional systems with
nearest-neighbor (NN) couplings for simplicity. In all cases,
we find that although the correlations can be complicated, the
CMVs behave in a simple manner.

A. Coherent Ising model

The Ising model has been extensively studied in the context
of ferromagnetism and phase transitions [13], and has been
applied to study cooperative behavior in fields as far removed
as biology [61]. In ultracold matter, there are many proposals
and realizations of Ising Hamiltonians, for example, using
trapped ions [33–35,62], dipolar molecules [30–32,63–67] and
atoms [68,69], Rydberg atoms [23,26–29,70–73], and tilted
Bose-Hubbard systems [74,75]. Reference [76] overviews
these systems and others in which the Ising model can and
has been realized.

We consider the dynamics of the one-dimensional nearest-
neighbor Ising model without a transverse field or decoherence.
This is described by the Hamiltonian

HI = −J
∑

i

σ z
i σ z

i+1, (10)

where J is the interaction term. We study the dynamics of this
model initiated from the product state |θθθ · · ·〉, where

|θ〉 = cos θ/2 |↑〉 + sin θ/2 |↓〉 . (11)

With no loss of generality, we have assumed that the spins are
initially in the x-z plane. One experimentally straightforward
way to produce this initial state is to rotate each spin, after
it is prepared in the single-spin ground state |↓〉, by using a
global laser pulse. This is the standard first step of any Ramsey
experiment [26,77]. The system is then allowed to evolve from
the initial state under HI.

Over time, correlations build up in the system. References
[76,78,79] calculate the single-spin expectations and two-spin
correlations. The single-spin observables are

bz
k(t) = 〈

σ z
k (t)

〉 = cos θ, (12)

bx
k (t) = 〈

σx
k (t)

〉 = Re
(

sin θ
[
g+(J t)

]2)
, (13)

b
y

k (t) = 〈
σ

y

k (t)
〉 = Im

(
sin θ

[
g+(J t)

]2)
, (14)

where

g±(x) = cos2(θ/2)e−i2x ± sin2(θ/2)ei2x. (15)

The two-point correlations are

cxx
jk (t) = 1

4
(c++

jk + c−−
jk + c+−

jk + c−+
jk ), (16)

c
yy

jk (t) = 1

4
(c+−

jk + c−+
jk − c++

jk − c−−
jk ), (17)

czz
j,k(t) = bz

j (t)bz
k(t), (18)

c
xy

jk (t) = 1

4i
(c++

jk − c−−
jk − c+−

jk + C−+
jk ), (19)

cxz
jk(t) = 1

2

(
c+z
jk + c−z

jk

)
, (20)

c
yz

jk(t) = 1

2i

(
c+z
jk − c−z

jk

)
, (21)

where

c+±
k,k+n(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin2 θ [g+(J t)g+(±J t)] for n = 1

sin2 θg+(J t ± J t)
×[g+(J t)g+(±J t)] for n = 2

sin2 θ [g+(J t)g+(±J t)]2 for n > 2,

(22)

c+z
k,k+n(t) =

{
sin θg−(J t)g+(J t) for n = 1
sin θ [g+(J t)]2 for n > 1,

(23)

and the other correlations can be calculated from the identities

c−±
k,k+n(t) = [c+∓

k,k+n(t)]∗, (24)

c−z
k,k+n(t) = [c+z

k,k+n(t)]∗. (25)

Figure 4(a) shows the coherent dynamics for the initial
state θ = π/2. The NN correlations are described by a clover
oriented with its petals pointing at 45◦ in the yz plane. It
grows and shrinks periodically. At its maximum size, the clover
fattens to have some wheel-and-axle character.

Figure 4(b) shows the same dynamics for the initial state
θ = π/4. (This is the same example as that used in Fig. 1.)
The dynamics is qualitatively similar to the π/2 case, except
(i) the initial CMV is rotated to orient the clover perpendicular
to the initial Bloch vector, (ii) the clover is slightly smaller
[note that the size of the CMVs has been magnified for easier
visualization in Fig. 4(b)], and (iii) a precession about the z

axis is superimposed. This precession is a mean-field effect in
which every spin experiences a local field along the z axis due
to the interactions with the background spins. Although the
CMV precession closely follows the Bloch vectors, there are
small differences between the two.

As expected for a model with short-range interactions,
next-nearest-neighbor (NNN) correlations are smaller than the
NN correlations. More interestingly, the structure of the NNN
CMV is qualitatively different. It is a simple dumbbell that
grows and shrinks. In the Supplemental Material, we have
movies for the coherent dynamics for longer times [80].

This dynamics is exemplary of the utility of the CMVs.
Remarkably, although the components of the correlations
evolve in an extremely complicated manner, as shown in
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FIG. 4. Dynamics of the nearest-neighbor one-dimensional Ising
model (no transverse field) initiated from a state with all the spins
aligned. Arrows (green and purple) indicate Bloch vectors of three
adjacent spins belonging to an infinite spin chain. At every instant,
the correlations are depicted with respect to the first spin (purple). (a)
Coherent Ising dynamics (no dissipation) for θ = π/2 initial state.
(b) Ising dynamics for θ = π/4 initial state. (c) Ising dynamics with
dissipation for the same θ as (a). The CMVs for (b) and (c) have been
magnified by factors of 1.2 and 1.5, respectively, to be comparable to
(a) for convenient visualization.

Figs. 1(b) and 1(c), the CMVs behave simply: a growing and
shrinking clover superimposed on a rotation. If one were to
consider the dynamics of the many components C

αβ

ij , it would
be difficult to describe them, remember them, or form a mental
picture of them. In contrast, the CMVs provide a description
of the dynamics in terms of growth and rotation of figures that
is simple to describe, remember, and visualize.

B. Ising model with decoherence

There are deep questions about the fate of correlations
in open quantum systems that the CMVs may be useful in
illuminating. Furthermore, any system is inevitably coupled,
however weakly, to some environment, so understanding the
effects of this decoherence on the correlations is an important
practical goal.

With this in mind, we consider the dynamics of the Ising
model in the presence of an incoherent spontaneous emission.
We choose this form of decoherence both due to its simplicity
and because it is an important decoherence mechanism in many
experiments. The system’s reduced density matrix satisfies a
master equation with Markovian dissipation,

ρ̇ = −i[HI,ρ] + L(ρ), (26)

where L(ρ) is the Lindblad term,

L(ρ) = 

2

∑
j

(2σ−
j ρσ+

j − σ+
j σ−

j ρ − ρσ+
j σ−

j ). (27)

From Refs. [81,82], the single-spin expectations are

bz
k(t) = 〈

σ z
k (t)

〉 = (e−t − 1) + e−t cos θ, (28)

bx
k (t) = 〈

σx
k (t)

〉 = Re[e−t�2(J,t)], (29)

b
y

k (t) = 〈
σ

y

k (t)
〉 = Im[e−t�2(J,t)], (30)

where

�(J,t) = e−t/2

[
cos(st) + t

2
sinc(st)

]
, (31)

with sinc(x) = sin(x)/x and

s = 2

(
i


4
− J

)
. (32)

The correlations c
αβ

jk can be calculated using Eqs. (16)–(21) and
Eqs. (24) and (25), where, for the dynamics with decoherence,

c+±
k,k+n(t) =

⎧⎨
⎩

e−2t�(J,t)�(±J,t) for n = 1
e−2t�(J ± J,t)�(J,t)�(±J,t) for n = 2
e−2t [�(J,t)�(±J,t)]2 for n > 2,

(33)

c+z
k,k+n(t) =

{
e−t
(J,t)�(J,t) for n = 1
e−t�2(J,t) for n > 1,

(34)

where


(J,t) = e−t/2

(
is − 

2

)
tsinc(st). (35)

Figure 4(c) depicts the CMV for the Ising dynamics with
decoherence for θ = π/2 (also see the movie in the Supple-
mental Material [80]). The shape for the NN correlations is a
clover throughout the dynamics.

Despite the similarities, adding decoherence qualitatively
modifies the θ = π/2 CMV dynamics in two ways. The first,
trivial effect is that eventually the CMV vanishes. This happens
because the correlations vanish when all of the spins have
damped to the ground state (pointing along the negative z axis).
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Second, the CMV precesses (rotates about the z axis),
starting around tJ ∼ 0.7. This is more visually apparent in the
movie given in the Supplemental Material [80]. The precession
occurs only at later times because, unlike the coherent θ = π/4
dynamics, the rate of precession of the CMV (and Bloch
vectors) with decoherence grows with time. In fact, it is
proportional to the z component of the Bloch vector, as this
is essentially a mean-field effect similar to that occurring for
θ = π/4.

C. Fermi-Hubbard model

In this section, we study the dynamics of correlations
of the Fermi-Hubbard model after a sudden quench to the
noninteracting limit, which is similar to various quenches
considered in Refs. [24,25,83,84]. This can be accomplished by
sweeping across a Feshbach resonance or sufficiently lowering
the lattice depth. The equilibrium properties of the Fermi-
Hubbard model are well studied in cold atoms, and studying
its quench dynamics is an exciting frontier [85–93]. Great
progress has been made in terms of imaging fermions [94–96],
achieving Mott states [97–99], and generating short-range
antiferromagnetic (AFM) correlations [86,89,99–103]. With
these techniques, experimentally preparing the states that we
study and measuring the resulting correlations has become
feasible.

As in prior sections, we concentrate on the one-dimensional
case for simplicity. The Fermi-Hubbard Hamiltonian is

H = −J
∑

〈i,j〉,σ
c
†
iσ cjσ + U

∑
i

ni↑ni↓, (36)

where J is tunneling, U is the on-site interaction, and σ =↑,
↓. The c

†
iσ (ciσ ) are fermionic creation (annihilation) operators

and niσ = c
†
iσ ciσ is the number operator for spin σ at site i.

We calculate the correlations for U = 0 between sites q and r ,

〈σμ
q (t)σ ν

r (t)〉 =
∑
abcd

σ
μ

abσ
ν
cd〈c†qa(t)cqb(t)c†rc(t)crd (t)〉

=
∑
ijkl

A∗
qi(t)Aqj (t)A∗

rk(t)Arl(t)

×
∑
abcd

σ
μ

abσ
ν
cd〈c†ia(0)cjb(0)c†kc(0)cld (0)〉,

(37)

where a,b,c,d ∈ {↑,↓}. The Ajl are the propagators,

Ajl = 1

N

∑
k

exp [ik(j − l) + iEkt]

= (−i)|j−l|J|j−l|(2J t). (38)

Here, Jm(z) is a Bessel function of the first kind and

Ek = −2J cos (k) (39)

is the dispersion relation where we have assumed unit lattice
spacing.

We assume our initial state to be a product state, and as a
result the expectation value of a many-body operator can be
factored into a product of single-site expectation values. For

an arbitrary product state, we find that the Bloch vectors are

b
μ

i (t) =
∑
ab

σ
μ

ab

∑
j

|Aij (t)|2fj (ab) (40)

and the correlation functions are

cμν
qr (t) =

∑
abcd

σ
μ

abσ
ν
cd

(∑
i

|Aqi(t)|2|Ari(t)|2

×{gi(abcd) − fi(ab)fi(cd) − fi(ad)[δbc − fi(cb)]}

+
[∑

i

|Aqi(t)|2fi(ab)

][∑
k

|Ark(t)|2fk(cd)

]

+
[∑

i

A∗
qi(t)Ari(t)fi(ac)

]

×
⎧⎨
⎩
∑

j

Aqj (t)A∗
rj (t)

[
δbc − fj (cb)

]⎫⎬⎭
⎞
⎠, (41)

where we have defined

fj (ab) = 〈c†jacjb〉, (42)

gj (abcd) = 〈c†jacjbc
†
jccjd〉, (43)

with the expectation values taken at time t = 0.
Although our calculations allow general product states as

initial conditions, here we concentrate on a specific initial state,
which we refer to as the canted antiferromagnetic product state.
This initial state can be viewed as an antiferromagnetic state
〈↑↓ · · ·〉 that is then canted by adding an x component to each
spin. Similar initial states can be prepared experimentally using
magnetic field gradients [104], polarization field gradients in
optical superlattices [105,106], or spin-changing collisions in
double wells [107–110]. As an example, we focus on a product
state,

|ψ〉 =
⊗

k

{|↗〉k, k even
|↘〉k, k odd, (44)

where |↗〉 = cos(π/8) |↓〉 + sin(π/8) |↑〉 and |↘〉 =
cos(3π/8) |↓〉 + sin(3π/8) |↑〉 [refer to Eq. (11)]. The
qualitative features in the dynamics are mostly independent
of the specific choice of the initial state. This state is chosen
to give concrete examples of CMVs as shown in Fig. 5 that
highlight symmetries that are not obviously connected to the
symmetry or orientation of the Bloch vectors or that of the
Hamiltonian. For this initial state, we have

fj (ab) =
[

1

2
+ (−1)j+δa↓

2
√

2

]
δab + 1 − δab

2
√

2
, (45)

gj (abcd) =
[

1

2
+ (−1)j+δa↓

2
√

2

]
δbcδad + δbc(1 − δad )

2
√

2
. (46)

Figure 5 depicts the dynamics of a system that starts with a
canted antiferromagnet as its initial state and then is quenched
to a noninteracting system (also see the movie in the Supple-
mental Material [80]). We find that the maximum correlation
with respect to the first spin (purple) initially shifts over time
from NN to NNN. At longer times, the influence of correlations
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J t
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0.00

FIG. 5. Dynamics of noninteracting spin-1/2 fermions initiated
from an initial one-spin-per-site (Mott-insulating) staggered spin
product state is shown. Time advances vertically, from bottom to top,
with each panel corresponding to the evolution of the correlation at a
given time.

continues to spread over wider spatial regions. The propagation
of correlations in a lattice is commonly referred to as the light
cone [111–115]. It should also be noted that the maximum size
any CMV can attain decreases with distance and time. The
CMVs have the wheel-and-axle shape with a U(1) symmetry
around the z axis. This is particularly interesting because
it contrasts with both the initial state’s Z2 glide symmetry
and the Hamiltonian’s SU(2) symmetry. The geometric object
representing the correlations uncovers emergent symmetries
that are not trivially related to either the Hamiltonian or the
initial state. This surprising observation reveals features in
nonequilibrium dynamics that remain to be understood.

D. Transverse Ising phase diagram

In contrast to the previous sections, which involved
nonequilibrium dynamics, here we focus on equilibrium corre-
lations. Specifically, we study the one-dimensional transverse

Ising model with NN interactions,

HT = HI − h
∑

i

σ x
i , (47)

where h > 0 is the transverse field. We define g = h/J . With
this definition, gc = 1 is the critical value of g that separates
the ferromagnetic and paramagnetic phases at zero temperature
[13]. The single-spin expectations are [116]

〈σx〉 = D0, (48)

〈σy〉 = 0, (49)

〈σ z〉 = 0, (50)

and the correlations are [116]

Cxx
i,i+n =

∣∣∣∣ D0 Dn

D−n D0

∣∣∣∣ − D2
0

= −D−nDn, (51)

C
yy

i,i+n =

∣∣∣∣∣∣∣∣∣∣

D−1 D0 . . . Dn−2

D−2 D−1 . . . Dn−3

...
...

. . .
...

D−n D−n+1 . . . D−1

∣∣∣∣∣∣∣∣∣∣
, (52)

Czz
i,i+n =

∣∣∣∣∣∣∣∣∣∣

D1 D2 . . . Dn

D0 D1 . . . Dn−1

...
...

. . .
...

D−n+2 D−n+3 . . . D1

∣∣∣∣∣∣∣∣∣∣
, (53)

C
xy

i,j = C
yz

i,j = Cxz
i,j = 0, (54)

where

Dn = −
∫ π

−π

dk

2π

[
1 − 2v2

k + 2iukvk

]
eikn tanh

(
ωk

2T

)
. (55)

Here, T is the temperature, we have set the Boltzmann constant
kB = 1, ωk is given as

ωk = 2J
√

1 + g2 − 2g cos k, (56)

and uk and vk are given as

uk = 2J sin k√
2ωk[ωk − 2J (g − cos k)]

, (57)

vk = ωk − 2J (g − cos k)√
2ωk[ωk − 2J (g − cos k)]

. (58)

Figure 6 shows CMVs in different regions of the equilibrium
phase diagram of the transverse Ising model. At g = 0, we have
a dumbbell-shaped CMV for all values of T . The dumbbell
shape and its evolution with g and T is of some physical
interest. To obtain some insight into this, note that in the (purely
classical) limit of a Hamiltonian depending only on the σ z

i , the
density matrix is

∑
qr∈{↑↓} ρqr |qr〉〈qr|. This has correlations

along z and vanishing x and y correlations, leading to a
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T/J

(viii)
(g, T/J) = (1.5, 0.0)

(vi)

(i) (iv)

(ix)
(g, T/J) = (0.0, 0.0)

(v)

(x)
(g, T/J) = (4.0, 0.0)

1.0
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FIG. 6. Correlations are shown throughout the equilibrium phase diagram for a one-dimensional NN transverse-field Ising model, where FM
stands for ferromagnetic phase and PM for the paramagnetic phase. The FM phase strictly exists only at T = 0. Each panel in (i)–(vi) contains
the CMVs corresponding to a specific value for the parameters (g,T /J ). Left and right CMVs in each panel are NN and NNN correlations,
respectively. The Bloch vectors have small but finite lengths at small values of g.

dumbbell shape. Upon perturbing this system with a transverse
field, quantum fluctuations create coherences and correlations
involving the x and y directions. This is reminiscent of the
fact that in the similar steering ellipsoid visualization of
Ref. [56], a single nonzero eigenvalue is insufficient to obtain
entanglement.

On increasing the transverse field g, there are two significant
trends. First the Bloch vectors grow along the x direction
as expected. Second, the CMVs gradually change from a
dumbbell to a disklike shape [see Fig. 6(vi)], which indicates
that there are nonzero correlations in the yz plane. This is due
to quantum fluctuations.

For extremely large g, a new symmetry emerges corre-
sponding to rotations about the x axis. One way to understand
this is by the mapping presented in Ref. [114] showing that this
model for g → ∞ maps to an XX model with this symmetry.
However, we note that by examining the correlations with
CMVs, the emergent symmetry is immediately apparent even
without prior knowledge of this mapping.

Increasing temperature leads to a dumbbell shape in all
cases. This is clearest in Fig. 6(iii). This occurs as the thermal
fluctuations overwhelm the quantum fluctuations, even though
the correlations remain strong.

The NNN correlations are smaller in magnitude than the
NN correlations for all values of g. However, this is visually
apparent only away from the (g,T ) = 0 point.

V. CONCLUSION

We generate a three-dimensional geometric object by as-
sociating spin-correlation matrices with a quadratic form. We
apply this visualization scheme to various prototypical corre-
lated quantum states, and to a variety of models relevant for
ultracold-atom experiments. We demonstrate that phenomena
that look complicated and mysterious when analyzed by the

components of their correlations become simple and intuitive
when described geometrically. For example, the CMVs de-
scribing correlations often pulsate and rotate in fairly simple
ways.

The simplicity uncovered by our work opens up exciting
questions: Are there ways to determine qualitatively the shapes
that appear in the CMVs, especially for models that are not
exactly solvable? Are there general rules that underly the
simple motions of the CMVs? For example, can we understand
under what circumstances CMVs grow and shrink, or when
they rotate in a simple manner, for example at a steady rate
around a fixed axis?

It will also be interesting to uncover how a given manipula-
tion of the CMV shape can be engineered via Hamiltonian
evolution or other quantum operations. Use of this insight
to control the state would have applications in quantum
information and many-body physics. It would be intriguing
to combine this with the methods in Ref. [117], where each
edge on their graph would be associated with a CMV between
the corresponding pair of spins.

Two-spin CMVs can be generalized in various ways. One
can associate three- and higher-spin correlations with geo-
metric objects (see Appendix B). The number of correlation
components grows exponentially with the number of spins
involved, Ns ; specifically, there are 3Ns components. Thus the
correlations may have a complexity far exceeding two-spin
correlations. It would be especially interesting if equally simple
motions underlie these higher-spin correlations.

ACKNOWLEDGMENTS

K.R.A.H. acknowledges the Aspen Center for Physics for
its hospitality while part of this work was performed. J.H.
acknowledges the SCI REU program for giving him the
opportunity to do this work at Rice University. This work was

043606-8



GEOMETRIC REPRESENTATION OF SPIN CORRELATIONS … PHYSICAL REVIEW A 97, 043606 (2018)

supported with funds from the Welch Foundation, Grant No.
C-1872. We also acknowledge discussions with Charles Xu
and Kenneth Wang.

APPENDIX A: VISUALIZING ASYMMETRIC
CORRELATION MATRIX

Our method of using quadratic forms depends only on the
symmetric part of the correlation matrix. To visualize an arbi-
trary correlation matrixCij , note that it can be split into a sum of
symmetric and antisymmetric parts, Sαβ

ij = (1/2)(Cαβ

ij + C
βα

ij )

and Aαβ

ij = (1/2)(Cαβ

ij − C
βα

ij ), respectively. The former may
be visualized as in the main text, while the antisymmetric
piece can be identified as usual with a pseudovector (a,b,c).
The pseudovector can be visualized as an arrow (similar to
the Bloch vectors) or by level sets of linear forms L(�r) =
ax + by + cz (perhaps adding an appropriate denominator to
render them compact), much as we use level sets of Q(�r) for
the symmetric piece. Another method to handle asymmetric
correlations is to take singular-value decompositions of the
relevant matrix and consider left and right eigenvectors [55].

APPENDIX B: GENERALIZATION TO MANY-SPIN
CORRELATIONS

Let the connected correlation matrix for N spin-1/2’s be the
rank-N tensor C

μν...γ

ij ...N = 〈σμ

i σ ν
j · · · σγ

N 〉 − · · · , where “· · · ”
indicates terms to be subtracted in order to produce the desired
connected correlation. One can define a CMV by

F (Cij...N ,r) =
∑

μ,ν...γ∈{x,y,z}
C

μν...γ

ij ...N rμrν . . . rγ . (B1)

Similar to the two-spin case, the extent of the geometrical
object in a direction α measures the size of the correlations
in that direction. Also similar to the two-spin case, this is
now sensitive only to the totally permutationally symmetric
component of the correlations.

APPENDIX C: IRREDUCIBLE COMPONENTS OF N-BODY
CORRELATIONS

In order to gain insight into the correlations, it can be useful
to decompose the tensor Cij...N into its spherically irreducible
components, a method employed in Ref. [56]. This method
makes more explicit the properties of the figures under global
spin rotations and includes both symmetric and asymmetric
correlations in a uniform manner. We decompose

Cij...N =
∑
l∈L

l∑
m=−l

alm(Cij...N )Tlm, (C1)

where L = {0,1, . . . ,N}, Tlm are the components of the spher-
ical tensor Tl with rank l, and alm are the coefficients of the
expansion, which characterize Cij...N . To visualize Cij...N , one
can plot

f (Cij...N ; θ,φ) =
∑
l∈L

l∑
m=−l

alm(Cij...N )Ylm(θ,φ), (C2)

where Ylm(θ,φ) are the spherical harmonics. If one prefers a
three-dimensional image, similar to the CMVs, one can add
a dependence on r and plot level sets; e.g., one can plot level
sets of f (Cij...N ; θ,φ)/(1 + r2)3/2.

A convenient extension to this is to consider associating
each irreducible sector with its own geometric object. Thus,
one associates the l = 0 terms with one object, the l = 1
terms with another, and so on. To do this, one restricts
the sum in Eq. (C2) to the l corresponding to the object.
This representation is convenient because under global spin
rotations, objects of shapes in the rank-l irreducible space
transform only among each other, and not into shapes in other
spaces.

The case of two spin-1/2’s provides a familiar example. The
correlation tensor can be decomposed into a sum of l = 0,1,2
components C = C0 + C1 + C2 (suppressing ij . . . N indices
for brevity), with

C
μν
0 = δμν

Tr(C)

3
, (C3)

C
μν
1 = Cμν − Cνμ

2
, (C4)

C
μν
2 = Cμν + Cνμ

2
− C0. (C5)

To compare this decomposition with the method used in the
main text, note that there we plot the entire symmetric part
of C, i.e., C

μν
2 + C

μν
0 . This more directly allows one to read

off the size of the total correlations in a given direction, but at
the cost of a slightly more complicated transformation under
rotations.

APPENDIX D: RELATING THE SIZE OF CMV TO THE
MAGNITUDE OF CORRELATIONS

In the main text, Sec. III discussed how to read infor-
mation off of a CMV, and in particular it claimed that the
extent of the CMV along a unit direction ê indicates the
size of “connected correlations in that direction,” Cij (ê) =
〈(σ i · ê)(σ j · ê)〉 − 〈σ i · ê〉〈σ j · ê〉. The main step towards this
connection is Eq. (8), which established that Cij (ê) is equal to
Q(Cij ,ê). Then, the interpretation of the CMV is validated by
noting that the value of Q(Cij ,ê) determines the extent of the
CMV along ê.

The purpose of this appendix is to establish this intuitive
link between Q(Cij ,ê) and the size of the CMV along ê, and to
give more insight into it. Figure 7 demonstrates the key idea:
as Q(Cij ,ê) is increased, the graph of Qf as a function of the
distance along that direction is increased. Due to the peaked
shape of this function, the inner and outer parts of the level
set get farther apart, increasing the size of the shape in that
direction.

To establish this geometric fact algebraically, we will
calculate the separation of the inner and outer level sets where
Q(Cij ,r

∗) = P , for r∗
in and r∗

out, respectively. We will assume
that the inner level set r∗

in � 1 and r∗
out � 1, not because we

expect this to be valid generally, but because this case is
illustrative of the connection that we seek to establish
and the math is particularly simple. Equation (5) can be
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Q
f
(C

ij
,r

)

|r|

r∗2
r∗1

12

1

FIG. 7. Two CMVs are shown corresponding to level sets of
Qf (Cij = 0.1,r) = 0.1 (labeled as 1) and Qf (Cij = 0.2,r) = 0.1
(labeled as 2). The size of each lobe belonging to CMV 1,2 is given
by r∗

1,2, as suggested by Eq. (D2).

rewritten as

Qf = 〈(σi · r)(σj · r)〉 − 〈σi · r〉〈σj · r〉
(1 + r2)3/2

= r2[〈(σi · r̂)(σj · r̂)〉 − 〈σi · r̂〉〈σj · r̂〉]
(1 + r2)3/2

= r2

(1 + r2)3/2
Cij (ê). (D1)

In the limit considered, r∗
out = Cij (ê)/P and r∗

in = √
P/Cij (ê).

Thus the size of a CMV along the direction r is given as

r∗
size = r∗

out − r∗
in = [Cij (ê)/P −

√
P/Cij (ê)]. (D2)

From the above expression, one sees that as the magnitude
of Cij (ê) increases, so does the size of the CMV along that
direction. This interpretation still holds without making the
asymptotic assumptions we have here, but the CMV size along
ê is no longer related to the value of Q(Cij ,ê) by a simple
proportionality.

APPENDIX E: COMPARING CMV WITH ANALOGOUS
METHODS OF VISUALIZATION

The crucial ideas in our paper and its conclusion—that ge-
ometrically visualizing two-body correlations unveils simple
features in many-body physics—is not tied to the particular
CMV visualization method that we have chosen. Alternative
visualizations of correlations, for example based on Wigner
functions [53–56] or eigenvectors, can reveal the same physics,
but they differ in their detailed interpretation, aesthetics, and
ease of implementation. The objective of this appendix is to
compare these methods with the CMVs. Figure 8 summarizes
this comparison.

We consider two alternatives to CMVs that encode the same
information—the two-spin correlations—in visually different

[tJ ] (a) (b) (c)

0.3

0.9

1.2

1.5

0.6

FIG. 8. Comparing visualization methods for two-spin correla-
tions, using (a) CMVs and (b) eigenvector plots with eigenvectors
sized according to the corresponding eigenvalue and colored accord-
ing to the sign; blue and red indicate negative and positive correlations.
(c) Wigner functions of the two-spin subsystem.

manners: (1) plotting the eigenvectors and eigenvalues of the
correlation matrices and (2) plotting Wigner functions associ-
ated with the two-spin subsystem of the many-body system.
Examples of these visualizations are shown in Figs. 8(b)
and 8(c), respectively. In the Supplemental Material [80], we
provide the movies depicting the Ising dynamics using the
eigenvector picture and the Wigner plots.

The first method, associating the correlation matrix given
by Eq. (3) with geometrical objects by plotting its eigenvectors
and eigenvalues, is illustrated in Fig. 8(b). Specifically, to
visualize the set of eigenvalues λα and normalized eigenvectors
�vα , we draw a rod centered at the origin along the direction of
�vα with length |λα|, and colored according to the sign of λα . A
rod is the most natural geometrical object to associate with an
eigenvector since an eigenvector remains an eigenvector upon
inverting its sign. These figures closely parallel the CMVs, as
expected from the discussion of Sec. III. In fact, if one imagines
fattening out the rods in these figures, they would look like the
CMVs. Hence, the differences are almost entirely aesthetic.

The second method, plotting the Wigner functions of the
two-spin subsystem whose correlations are being considered,
is illustrated in Fig. 8(c). These visualizations merit more
discussion, as they are less trivially related to the CMVs. Let
us first look at how this visualization method is defined, and
then its main features.

To obtain the Wigner functions, we expand the reduced
density operator for the two spin-1/2s whose correlation is
being considered as

ρ =
2j∑

k=0

k∑
q=−k

ρkqTkq, (E1)

043606-10



GEOMETRIC REPRESENTATION OF SPIN CORRELATIONS … PHYSICAL REVIEW A 97, 043606 (2018)

where j = 1 for two spin-1/2s, Tkq is the multipole operator
defined as

Tkq =
j∑

m=−j

j∑
m′=−j

(−1)j−m
√

2k + 1

×
(

j k j

−m q m′

)
|jm〉〈jm′|, (E2)

|jm〉 are the Dicke eigenstates of the total angular momentum
operator for the two-spin system, and ( j1 j2 j3

m1 m2 m3
) is the 3j

symbol. This implicitly defines the ρkq . Following Ref. [53],
the corresponding Wigner function is

W (θ,φ) =
2j∑

k=0

k∑
q=−k

Ykq(θ,φ)ρkq, (E3)

where Ykq(θ,φ) are the spherical harmonics. To produce the
plots in Fig. 8(c), we make spherical plots of the Wigner
function W (θ,φ) where, for each value of θ,φ, the radius of
the figure is given as W (θ,φ). We also plot only the k = 0
and k = 2 components of W (θ,φ) in Fig. 8(c) since the k = 1
information is already provided by the Bloch vectors. For
simplicity, we only show the absolute value of W (θ,φ), but
in general W (θ,φ) is a complex number.

Most importantly, we see that the dynamics of the Wigner
function, just as for the CMVs, uncovers behavior in this
many-body system that is simple to describe. Roughly, the
Wigner function rotates at a constant rate around a fixed
axis, while its shape changes gradually. This parallels the
behavior of the CMVs. The shape of the Wigner function is
somewhat different—it is a clover, but oriented differently than
the CMVs. There is no reason these shapes should coincide, as
they represent the state in different ways. Nevertheless, despite
some differences in how they encode the correlations, this
method is also capable of yielding the primary result of this pa-
per, revealing a previously hidden geometric structure in many-
body systems, just as well as the CMVs (and eigenvector plots).

Although the choice of visualization method is thus some-
what a matter of taste, the CMVs do enjoy some advantages.
For one, they are somewhat easier to implement given the
correlation functions, requiring one only to plot level sets of
the quadratic functions defined by Eqs. (4) and (5). Moreover,
if one is particularly interested in the diagonal correlations
〈(σ i · e)(σ j · e)〉 − 〈σ i · e〉〈σ j · e〉, these are the most straight-
forward to read off from the CMVs: the size of the CMV
along direction e is roughly proportional to the size of this
correlation, as shown in Eq. (8). Perhaps the most important
advantage, however, is a purely practical one: our experience is
that it is easier to determine the orientation from the CMVs than
the eigenvector plots, as the three-dimensional shape supplies
more visual cues.
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