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Complex-network description of thermal quantum states in the Ising spin chain
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We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in
a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by
various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence,
and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by
mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state
using matrix product state methods, and then analyze the resulting networks using a variety of network measures.
We demonstrate that the network measures show some traits of complex networks already in this spin chain,
arguably the simplest quantum many-body system. The network measures give insight into the phase diagram
not easily captured by more typical quantities, such as the order parameter or correlation length. For example,
the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is

different from the ordered and disordered phases.
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I. INTRODUCTION

Network analysis is a powerful technique to characterize
the structure of connections between agents in a network
[1,2]. Studies have shown that classical systems as diverse
as the brain and the Internet have a complex-network struc-
ture [3-8]. Quantum systems also show a wide variety of
complexity emerging due to interparticle interactions. Like
classical systems, quantum systems have an interconnected
web of correlations, and network analysis provides a powerful
set of tools to study them. However, while complex networks
are ubiquitous in classical systems with a sufficiently rich set
of interacting components, it is an open question what the
minimal interacting quantum many-body system is in which
complex-network structures can appear.

In this paper, we address this question by studying the
network of correlations that arises in the simplest of interacting
quantum models, the one-dimensional transverse field Ising
model (TIM). We introduce and calculate networks whose
links are weighted by various measures of correlations and
entanglement, and quantify their complexity. The emergence
of network complexity illuminates the richness of the quantum
system.

Earlier works have studied complex networks in the con-
text of quantum systems, but by enforcing complex-network
structure in the Hamiltonian, e.g., in interactions [9—14].
However, there is no need for this explicit enforcement, as
one finds network structure already in quantum states even for
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simple models such as the nearest-neighbor TIM. The network
naturally arises in their correlations, just as it does in classical
systems. We quantify the network’s complexity via network
measures. Quantifying this complexity at zero temperature has
found applications such as identifying phase transitions [15].

We calculate networks for the spin-spin correlations, the
mutual information, concurrence, and negativity of spins
using analytical solutions for the two-spin reduced density
matrix at an arbitrary temperature and magnetic field in the
thermodynamic limit. We also numerically calculate these
networks for the ground state of a finite system, using matrix
product state (MPS) methods [16—18] implemented in the
OPENMPS code of Ref. [19]. All these networks are calculable
from measurements in a variety of experiments on cold atoms
and trapped ions [20-34]. We analyze the structure of these
networks, specifically their density, disparity, betweenness
centrality, clustering coefficient, average geodesic distance,
and diameter. (We define these network measures in Sec. ITA.)

This article is organized as follows. In Sec. II, we describe
the networks and network properties we use to characterize
quantum systems. In Sec. III, we describe the TIM and its
analytical and numerical solutions. In Sec. IV, we calculate
network measures for the networks described in Sec. II. We
conclude in Sec. V.

II. COMPLEX NETWORKS

Complex networks are networks with nontrivial features in
their topology and connectivity that are not usually found in
other networks such as lattices or random graphs [1]. Natural
and social communities furnish abundant examples of complex
networks, e.g., the Internet, social media, citation networks,
neural networks in the brain, food webs, and so on (see [35] and
references therein). These networks come in many kinds: they
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can be dense, disparate, uniform, or clustered. For example,
food webs are dense, metabolic networks are disparate, and
social networks are highly clustered [36-38].

For interacting quantum spins, we define an undirected
weighted network to represent the system, where node i
represents the ith spin, and link weight ¢;; is some measure
of correlation between spins i and j. The network is defined to
have no self-connections, e¢;; = 0 Vi. Even short-range inter-
actions between spins lead to complex long-range correlations
in the system, leading to a rich network structure that varies
across the phase diagram.

Our main theme is that the networks that we define ef-
fectively represent information about the quantum system.
We demonstrate this by using network analysis techniques.
We show that the variation of the network measures with
system parameters—magnetic field and temperature—mirrors
the underlying phase diagram.

A. Network measures

Network measures quantify the distinguishing features of
networks. These measures can be defined locally on a node,
or globally for a network. Commonly used local measures for
nodes are the density d;, disparity Y;, and various centrality
measures such as the betweenness centrality B;, the eigen-
vector centrality E;, and the Katz centrality K;. Some global
network measures are the clustering coefficient C, average
geodesic distance D, and the diameter Dy,,c. We define these
network measures as applicable to weighted networks. For a
network with N nodes and link weights e;; between nodes i
and j, the network measures we use are defined as

o _ 2 i
Density: d; = St
. . Z/ e,z
Disparity: Y; = —,
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Betweenness B, _ Z Njik
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Y e
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where D;; is the geodesic distance (i.e., length of the shortest
path) between nodes i and j, with the distance of a direct path
from i to j defined as 1/e;;. N is the number of geodesic
paths from j to k, and Nj;; is the number of geodesic paths
from j to k via i. We describe these measures by calculating
them for the network examples depicted in Fig. 1. The density
d; quantifies the importance of node i as the sum of the link
weights connected to it; for example, in Fig. 1,ds > dp > dc.
The disparity Y; quantifies how dissimilar a node’s connections
are; in Fig. 1, Y4 < Yp < Y¢. The betweenness centrality B;
measures the importance of node i to the connectivity of
other parts of the network to each other. A node has a high

C

(a) (b)

FIG. 1. Examples of weighted networks illustrating the meanings
of the different network measures we use, namely, the local measures,
density, disparity, and betweenness centrality for a node, and the
global measures, clustering coefficient, average geodesic distance,
and diameter for a network. In the examples above, the thickness of
a link is proportional to its weight. Node A has a large density and
betweenness centrality, and a small disparity. Node B has a small
density and disparity, and a large betweenness centrality. Node C has
a small density and betweenness centrality, and a large disparity. The
network in (a) has a smaller diameter, average geodesic distance, and
clustering coefficient than the network in (b).

betweenness centrality if removing it distances many other
parts of the graph from each other. In Fig. 1, B4 = Bg > Bc.
The clustering coefficient of a network measures cohesiveness
of the network. For an unweighted network, the clustering
coefficient is thrice the ratio of the number of triangles (three
mutually connected vertices) in the network to the number of
triplets (three connected vertices). For example, the network
in Fig. 1(a) has no triangles and 12 triplets. The network
in Fig. 1(b) has one triangle formed by the three leftmost
nodes and 12 triplets. We have generalized the definition of the
clustering coefficient to apply to a weighted network in Eq. (1).
The diameter Dy, is the geodesic distance between the most
distant pair of nodes, and the D is the average geodesic distance
between all pairs of nodes. The network in Fig. 1(a) has a
smaller diameter, average geodesic distance, and clustering
coefficient than the network in Fig. 1(b).

The networks that we consider in the rest of this paper
differ from the examples in Fig. 1 in at least two important
respects: we mostly consider the thermodynamic limit, and all
nodes are identical due to translational symmetry. Although
correlations are calculated in the thermodynamic limit, in
practice we truncate the size of the graph to N ~ O(100).
We systematically analyze the convergence of our network
measures as N increases [see Figs. 4, 5, 7, 9(c), and 9(d)].
The translational symmetry has a few consequences. First,
it is meaningful to define the density d, disparity Y, and
the betweenness centrality B for the network as the density,
disparity, and betweenness centrality of an arbitrarily chosen
node. Second, some network measures are simply related to
others. For example, the eigenvector centrality E; and Katz
centrality K;, which are defined as the solutions to

Ze,‘jEj = )\,E,‘,
J

2)
OlZe,‘j(Kj + 1=K,
J

with A the largest eigenvalue of the adjacency matrix with
matrix elements e;; and o an arbitrary real number between 0
and 1, are both trivially related to the network measures already
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defined in Eq. (1). Translational symmetry and the fact that all
link weights are positive imply that the eigenvector centrality
of all nodes is E; = 1, and A = Nd;. The quantity A is called
the strength of the network. The Katz centrality immediately
follows as

oA
1 —a)’
We do not explicitly present these measures since they follow

immediately from the density d; for our networks due to
translational invariance.

3)

i =

B. Correlation and entanglement networks for the spin chain

We denote the magnetization m’j‘ of the jth spin along the
wu direction and the correlations between spins i and j as
m" = (5‘.‘) (4a)
j il
) =1(6/6}). (4b)

The reduced density matrices for one and two spins are

pi = Zm o, (5a)
[l. 0
pij = Z o " (sb)
u, v=0
respectively, where we  denote (0%0',0%,06% =

(1,0%,07,0%). From these, we calculate several measures
that describe correlations and identify entanglement between
sites 7 and j: the von Neumann mutual information Z;;, the
Rényi mutual information Iq the concurrence C;;, and the
negativity V;;. These correlatlon measures are defined as

7, = (le2> 10g2p<2> plog, p — pjl)logz p<1))7
(6a)
1
Iy = sa—gy e [Tr(e" ©0")" /T ()], (6b)
Cij = max(O,Aij — Aij — )»ij — )»i{), (6¢)
Tr|(1® T)p?
N, = r|1®Tp;| - ’ 6d)

2

where Aij k;j ,kéj ,kij are the eigenvalues of W Pl(jz)\/;

in decreasing order, ,0(2) = 6‘6‘(,012))’“ 767 is the spin-
flipped reduced density matrlx and T is the transpose operator.

For each type of correlation, we define a network whose
links are weighted by that correlation. (For the negativity
network, we define the link weights as ¢;; = —\/;; to keep
them positive). We analyze these networks using the measures
defined in Eq. (1). These network properties provide a wealth
of information about the underlying system. All six network
measures—density, disparity, betweenness centrality, cluster-
ing coefficient, average geodesic distance, and the diameter—
or their gradients are observed to have extrema at quantum
phase transitions. This appears to be true regardless of the

correlation measure—von Neumann or Rényi mutual infor-
mation, spin-spin correlation, concurrence, or negativity—
used to build the graph. Reference [15] has also shown that
network measures undergo sharp changes for a wide variety
of zero-temperature phase transitions—mean field, Z,, and
Berezinskii-Kosterlitz-Thouless.

III. TRANSVERSE FIELD ISING MODEL AND SOLUTIONS

The TIM for a one-dimensional chain of L spins is

Ay =Y (=76i65,, +hé7), (7)

J
where the sum runs over all spins. In Sec. Il A, we present
analytical solutions for spin-spin correlations at an arbitrary
temperature in the thermodynamic limit L = oco. [We still trun-
cate our correlation networks at N ~ O(100)]. In Sec. III B, we
complement these solutions with a zero-temperature numerical

calculation of spin-spin correlations in finite L systems using
MPS methods.

A. Analytical solution at nonzero temperature
In the thermodynamic limit, I:ITIM can be diagonalized by
mapping spin operators to fermionic annihilation and cre-

ation operators d; and 4 T via a Jordan-Wigner transformation

[39,40]:
ix _ oats
T =2aa; -1,
N . cala, (o n A
Y = i(—)Zehal —a)), ®)
= (DD 8@t a)),

Under this transformation, ﬁTlM gets mapped to a Hamiltonian
that describes the Kitaev chain [41]:

Hyw = J (@), +a;,,)@)
J

A At
—a,)+h@ala; —1). (9

We diagonalize Hyw by rotating it into the basis of nonin-
teracting Bogoliubov quasiparticles [42,43]. Hyw is known to
have a topologically nontrivial superconducting ground state at
T = 0 for |h| < J, and a trivial superconducting ground state
at T = 0 for |h| > J, corresponding to the ferromagnetic and
paramagnetic phase in the TIM, respectively. When 7" > 0,
thermal fluctuations break long-range order, and the system is
always in the paramagnetic phase.

Spin observables for the Ising system at temperature T
can be calculated from the thermal equilibrium state of Hjw,
together with the Jordan-Wigner transformation [Eq. (8)]. It is
useful here to define a quantity

0, = (@] +a,)@, — ). (10)
In the thermodynamic limit,
T dk . 2h— Je i
0, = —/ dk 2 =Je ) n B gy
- 2 Wi 2
where 8 = 1/kpT and wy = 2|h — Je~¥|. It is then straight-

forward to show that

(67) = Qo. (12)
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We consider a system that is in a superposition which does not
break Z, spin symmetry. Therefore, (ol.y ) = (of) = 0. (This
corresponds to choosing the fermionic system to be in a state
with a fixed number parity.)

The product 6/°c;",,, can be written as a string of fermionic
operators. Correlations between spins can then be decomposed
and simplified using Wick’s theorem. The result is

2
C;C,)i(Jrn = Q() - Qn Q—m

0 Qo On-—2
0> 04 0n-3
i,i+n . . . . ’
Q—n Q—n+1 R Q—l
(13)
0, QO - Oy
Qo O, On1
Cztv.‘t:+n = . . ’
Q7n+2 Q7n+3 oo Ql
Xy X ' 4 X N 4 _ L —
ci,i+n - ci,i+11 - ci,i+n - Ci,i+n - Ci,H—n - Ci,H—n - 0’

as given in Ref. [44], and generalizing Refs. [45] and [46] to
finite temperature.

B. Zero-temperature numerical solution

We use MPS methods implemented in open source code
OPENMPS [47] to find the ground state of the Ising model
for finite systems with open boundary conditions [19]. MPS
methods are highly versatile and applicable to a wide variety
of interacting many-body systems, with the main constraint
being the amount of entanglement allowed [16]. In essence,
the algorithms perform data compression on the state of a
many-body system by using a series of Schmidt decompo-
sitions on bipartitions of the lattice, followed by the truncation
of a number of highly entangled states. OPENMPS utilizes a
variational ground-state search, a standard approach described
in Refs. [16] and [19]. In our simulations, we set the variance
tolerance (I:ITZIM) — (IT-AITHV[)2 < 107'9J2L, and study systems
with size L ranging from 10 to 100. The resulting ground state
is well converged.

IV. NETWORK ANALYSIS FOR THE TIM

In this section, we discuss the network structure of the
TIM, with each subsection focusing on networks weighted by
a different correlation measure.

A. von Neumann mutual information network

We calculate the von Neumann mutual information between
two spins, as defined in Eq. (6a), and plot it as a function of
their separation in Fig. 2. We find that the mutual information
is nearly uniform with distance when {h,kgT} < J (bottom
left panel), indicating a long-range ordered phase. The mutual
information does decay with distance but very slowly, with
a large correlation length & = O(W) ~ 0(ef’). The
mutual information algebraically decays with distance when
kT < h ~ J (bottom middle panel), indicating the presence

ksTH
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S -5 S -5 S -5
-+ o o
2T £-10 &-10 5-10
L 15 © _15 L _15
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FIG. 2. von Neumann mutual information versus distance for
the TIM at different temperatures and transverse field couplings.
The mutual information is nearly uniform when {h,kpT} < J, as
shown in the plot at the lower-left corner. The mutual information
algebraically decays near the quantum critical point, kg7 < J ~
h, as shown in the log-log plot in the lower middle. The mutual
information exponentially decays in all other regimes, as shown in
the remaining four log-linear plots.

of a quantum critical point in the vicinity. It exponentially de-
cays with distance in all other regimes, indicating a disordered
phase of the spins.

The physics is further elucidated by the adjacency network
built from the mutual information. Figure 3 shows all the
network measures—the density, disparity, betweenness cen-
trality, clustering coefficient, average geodesic distance, and
diameter—of this weighted mutual information network as a
function of magnetic field and temperature.

In the ferromagnet (lower-left panel in Fig. 2), the nearly
uniform spatial structure of the mutual information yields a
small disparity, and a large density and clustering coefficient.
Nearly all geodesic paths between nodes are direct paths
across one link. Hence, the betweenness centrality, average
geodesic distance, and diameter are all small. (Calculating the
betweenness centrality on a large network is computationally
expensive. Therefore whenever N > 20, we calculated the
betweenness centrality for a small region in the center of the
network.)

In the paramagnet (bottom right and top panels in Fig. 2),
the mutual information decays exponentially with distance,
resulting in a higher disparity, betweenness centrality, average
geodesic distance and diameter, and a smaller clustering. As
we discuss later in Fig. 5, the density in the thermodynamic
limit is zero everywhere in this phase. The nonzero density in
Fig. 2(a) for T > 0 or h > J is an artifact of working with a
network of a finite size, N ~ O(100). The density converges
to zero in this phase for network sizes N > &.

The most noticeable feature about the network measures is
that they all change sharply across the phase transition from
the ferromagnet to the paramagnet at 7 = 0,7 = J. All their
gradients are observed to have extrema at the transition.

The network measures also provide information be-
yond the standard quantities—correlation length and critical
exponents—that are used to characterize the phase transition.
For example, in the quantum critical fan region near the critical
pointat 7 = 0,h = J, the network structure differs from thatin
either the low-temperature disordered or ordered phase. In the
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FIG. 3. Network measures of the von Neumann mutual informa-
tion network for the TIM in the thermodynamic limit as a function
of temperature and magnetic field. (a) Density of links connected
to a node in the network. (b) Disparity of a node. (c) Normalized
betweenness centrality % of a node i. (d) Clustering coefficient of
the network. (e) Normalized average geodesic distance % between
nodes. (f) Normalized diameter D‘;\“,'"‘* of the network. The distance
between two nodes across a link is defined as the inverse of the mutual
information between them. The gradients of all network measures are
observed to have an extremum at the quantum phase transition at
T=0h=J.

critical fan, the density and clustering coefficient appear closer
to those of the paramagnetic phase, while the other network
measures resemble the ferromagnetic phase. The width of
the fan also appears to be different for the different network
measures.

We address finite-size effects on two fronts. First, in Fig. 4,
we show finite-size effects at zero temperature using MPS for
all complex-network measures. The critical point is still clearly
evident even for tens of sites, and moves toward h/J = 1 from
below, becoming sharper as the system size increases. For a
more detailed study of finite-size scaling effects, see Ref. [15].

Second, it should be noted that in Fig. 3, we use analytic
expressions for the reduced density matrices that are valid in the
thermodynamic limit L = co. However, we calculate network
measures for adjacency networks truncated to N =~ O(100)
nodes, assuming that the correlations have sufficiently decayed
when the separation between spins is O(100). To analyze the
convergence of our network measures as N increases, we plot
the strength A = Nd and disparity Y for different network sizes
in Fig. 5. We find that the disparity converges to a finite value
for all T,h, and N. The strength converges to a finite value for
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FIG. 4. Network measures of the von Neumann mutual informa-
tion network for the TIM at zero temperature as a function of inverse
system size and magnetic field. (a)—(f) plot the same quantities as in
Fig. 3, with inverse system size instead of temperature on the vertical
axis.

T > 0orh < J and large enough N 2> 50, implying that the
density is d = 0 in the thermodynamic limit of the network,
N — oo. However, when T = 0, h < J, and for large N, the
strength diverges as Nd =~ O(N), yielding a nonzero density.
As aresult, the density undergoes a discontinuous jump from 0
to a finite value as the system is tuned from 7 — 0t t0 T = 0
(which corresponds to tuning from the paramagnetic to the
ferromagnetic phase). Therefore, the density of the weighted
mutual information network is a good order parameter for the
ferromagnetic phase. All the other network measures converge
to finite functions of temperature at a large enough N = 50.

B. Rényi mutual information networks

Rényi mutual information also provides useful information
about a system. The von Neumann information is a special
case of the Rényi information: Z;; = lim,_, Ilqj . While the von
Neumann mutual information measures the sum of the log of
the eigenvalues of the reduced density matrix weighted equally,
the Rényi generalization skews the weights towards the largest
eigenvalues. Like the von Neumann information, the Rényi
mutual information can be readily extracted from tomography
measurements [20-23] of reduced density matrices, using
Egs. (5a), (5b), and (6b). Here, we calculate network properties
of adjacency networks for the Rényi mutual information
between spins.

Figure 6 shows all the network measures for the Rényi
mutual information network at different temperatures and mag-
netic fields as a function of Rényi order g. Figure 7 shows all the
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FIG. 5. (a) The strength A = Nd and (b) disparity Y of the von
Neumann mutual information network for different network sizes N.
Solid lines: & = 0, and dashed lines: & = J for system sizes N = 6
(large circles), N = 10 (diamonds), N = 20 (small squares), N =
50 (large squares), and N = 10000 (small circles). At T = 0, the
strength diverges as A &~ O(N), and therefore the density is nonzero.
Forall T > 0, the strength converges to a finite value as N is increased,
and therefore the density for a network in the thermodynamic limit is
d = 0. Unlike the density, all other network measures converge to a
finite function of temperature as the network grows in size.

network measures for the Rényi mutual information network
at T = 0 and different magnetic fields for systems with two
different sizes as a function of Rényi order ¢. Like the von

0.5 O-B(b ______ E

0.4{@ E‘% 0 i o,e%

03 J I com- »\’__-c"—‘y___v.—e———\"——é---é-'-(,‘---ﬁ
'00.2 159 = & >-0.4H

0.1 0.2 s

i mm i mm G mmBm O m =D

0.25 , 05
0.2} 0.4} @
~ s,
AEN o33
0051  TTTTmmr e gk
<
20
=15
(1]
10
5
q q

FIG. 6. Network measures of the Rényi mutual information net-
work as a function of Rényi order ¢ for the TIM in the thermodynamic
limit at different magnetic fields and temperatures. (a)—(f) plot the
same quantities as Fig. 3 versus Rényi order g at h = 0,7 = 0 (black
solid circles), h = J,T = 0 (blue solid diamonds), h = 1.5J,T =
0 (red solid squares), h = 0,kpT = J (black open circles), h =
J,kpT = J (blue open diamonds), and 2 = 1.5J,kpT = J (red open
squares).

I 0.8
o) (a) (b
0.4 w[10 90 O.Gg)r‘
0.3 " 0[— --o-
© > 04
0.2 1Tz —
0.2
= 0.5F
0.2
0.15 @ 24
~, 0 _ 0.3}(d)
o 0.1 00_2
0.05 0.1

pm === Sm ===
=

2 4 6 8 10 2 4 6 8 10

FIG. 7. Network measures of the Rényi mutual information net-
work as a function of Rényi order g for the TIM at zero temperature
at different magnetic fields and system sizes. (a)—(f) plot the same
quantities as Fig. 3 versus Rényi order ¢ at h = 0,L = 10 (black solid
circles), h = J,L = 10 (blue solid diamonds), 2 = 1.5J,L = 10 (red
solid squares), 7 = 0,L = 90 (black open circles), h = J,L = 90
(blue open diamonds), and & = 1.5J,L = 90 (red open squares).

Neumann mutual information, the Rényi mutual information
network at any fixed order ¢ has a different structure in the
ferromagnetic and paramagnetic phases and the critical fan
region.

Deep in the ferromagnetic phase at h = 0,7 = 0, the gth-
order Rényi information between spins i and j is Ilqj =0.5.
As aresult, we observe in Fig. 6 that the density and clustering
coefficient are 0.5, and all other network measures are zero
deep in this phase.

The Rényi information networks are observed to undergo
a sharp change at the quantum phase transition from the
ferromagnetic to the paramagnetic phase at 7 =0, h = J. In
the paramagnet, the Rényi information decays rapidly with
separation. We observe in Fig. 6 that the density and clustering
coefficient are 0, and all other network measures are nonzero
in this phase. In Fig. 7, we observe that all network measures
approach their thermodynamic limits as L increases.

We explore the L dependence of the network measures in
more detail in Fig. 10 in the Appendix.

C. Spin-spin correlation networks

In this section, we consider networks weighted by
the connected correlations Cf;” =(6/'6]) — (6/')(6)). From
Eq. (13), only the diagonal components CZ“ are nonzero.
Figure 8 shows the density and disparity of these networks
as a function of magnetic field and temperature.

We find that the C,, network shares features similar to the
mutual information network. This is expected, because C,; is
the dominant correlation. Again, the quantum phase transition
at T = 0, h = J distinctly stands out: the gradients of all the
network measures are observed to have an extremum at this
phase transition.
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FIG. 8. Network measures of the spin-spin correlation networks
for the TIM. Left panels: Density of links connected to a node in
the adjacency network for different spin correlations. Right panels:
Disparity of a node in these adjacency networks.

The networks built from C,, and Cy, also have intriguing
characteristics. Unlike the mutual information and C,,, which
are uniform in the ferromagnet and exponentially decaying
with distance in the paramagnet, C, and C,, exponentially
decay in both the paramagnet and ferromagnet. They alge-
braically decay with distance near the phase transition. The
density of the C, and C,, networks is observed to have a
maximum, and the disparity of both networks observed to have
a minimum at the phase transition.

D. Concurrence and negativity networks

Concurrence [Eq. (6¢)] is a non-negative entanglement
monotone that indicates if two spins are entangled. Negativ-
ity [Eq. (6d)] is a complete entanglement witness that also
indicates entanglement between spins. For entangled spins,
their concurrence is positive and their negativity negative. For
unentangled spins, both concurrence and negativity are zero.
For the TIM, the concurrence and negativity between two spins
i and j are (see Appendices)

1 ,
C,'j = maxI:O,—E(l — C;ij + C;‘;} — cZ?)i|, (14)

i

N _ s 0 1 XX yy 2z _ lc 5

,»j—mln ,Z(I—CU +Cij _Cij) ——z ijs (1 )

with ¢;i" given by Eq. (13). For this model, the concurrence

and negativity networks predominantly have only nearest-

neighbor connections. Therefore, the densities of the networks

in the thermodynamic limit are zero everywhere in the phase
diagram.
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FIG. 9. Network measures of the concurrence network for the
TIM. The top panels show (a) the strength of anode (=N x density) in
the network, and the normalized diameter %, at a finite temperature
(vertical axis) for a system in the thermodynamic limit. The bottom
panels show the same measures at zero temperature for systems of
lengths ranging from 10 to 50 sites (vertical axis). Above and to the
left of the dotted line in all four panels, the concurrence is zero for
all the links in the network, the strength is zero, and the diameter of
the network is infinite. The gradient of the density is observed to have
a maximum at the quantum phase transition at 7 =0, h = J in the
thermodynamic limit.

We plot the strength of anode (A = Ld) and the diameter of
the concurrence network in Fig. 9. We find that the strength is
nonzero in a region around 7 = 0, h = J. The gradient of the
strength is observed to have anextremumat 7 = 0, h = J. The
concurrence between all pairs of spins is zero above a critical
temperature, indicated by the dotted line in Fig. 9. This critical
temperature is not associated with any phase transition but with
the sudden death of entanglement between spins (for other
examples of entanglement sudden death, see, e.g., Ref. [48]).
Above this critical temperature, the concurrence network is
trivial and has all link weights as zero. The disparity is nearly
1 everywhere below the dotted line. Similarly, the normalized
betweenness centrality is always nearly % = %, and the
clustering coefficient is nearly 0. The diameter and average
geodesic distance are finite and related as D & Dy, /2 below
the dotted line. The diameter and average geodesic distance are
infinite above this line. The structure of the negativity network
is identical to that of the concurrence network.

V. CONCLUSIONS

The correlations between particles in an interacting quan-
tum system naturally form a weighted network. Characterizing
quantum systems via network properties of their correlation
networks is a new paradigm for exploring and visualizing
quantum systems. Since correlations between particles are
measurable in experiments [20-34], network analysis of the
correlations will be a useful tool to understand the underlying
physics of the system. We have shown that networks for
various correlation measures, such as spin-spin correlations,
von Neumann and Rényi mutual information, concurrence,
and negativity exhibit emergent complexity even for simple
Hamiltonians such as the one-dimensional transverse field
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Ising model. We used network analysis tools to characterize
the complexity of these networks, and showed that the network
measures provide a wealth of information about the system
throughout the entire phase diagram, above and beyond the
usual quantities such as the correlation length and critical
exponents. For example, all network measures for most corre-
lation networks had entirely different signatures in the different
phases of the Ising system, and exhibited distinct sharp features
at the quantum phase transition from the ferromagnetic to
the paramagnetic phase. The network measures also show
intriguing features in the critical fan region near the phase
transition, where the network structure is different from both
the ordered and disordered phases.

We predict that this new paradigm of visualizing a quantum
system as a network will have important implications for future
experimental as well as theoretical work. For example, we have
already argued and demonstrated that some network measures
effectively play the role of an order parameter, and all network
measures are effective at identifying equilibrium phases and
phase transitions. We also expect the correlation networks to
exhibit particularly interesting behavior with time in quench
or ramp experiments commonly performed with cold atoms
or trapped ions, since the propagation of correlations after a
quench or ramp may be efficiently visualized using changes in
the correlation network’s structure.
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APPENDIX A: CONCURRENCE BETWEEN SPINS

The two-spin reduced density matrix in the TIM is

e om o om apel
@ 1 m; 1—¢ X c;iy m?
Pr=al mr ae) 1- om
Cf‘;‘ ciyjy mf m’J‘ 1+ c.zjz
(A1)

Due to translational invariance, m; = mj‘ =m*. Let R(p) =

VAPPA/ P, With p = p(m* — —m™) the spin-flipped density
matrix. The eigenvalues A of R(p) satisfy
-2 =0.

det[R*(p) (A2)

Multiplying inside the determinant by /p~! on the left and
/P on the right, we find that A2 is also an eigenvalue of jp.
Therefore, all eigenvalues A of R(p) are eigenvalues of R'(p) =
/pp as well. The eigenvalues of R/(pg)) are (in decreasing
order),

)\1 = %[\/(1 —+ Cxx) 4(mx)2 -+ C7Z — }j)]’
)\2 — %(1 xx + C}} —I—CZZ)
(A3)
M= (1= = =)
)\4 — i[\/(l + Cxx) 4(mx)2 _ CZ7 —{—C”]
Therefore, the concurrence between two spins is
C = max(O,M — )»2 — )\.3 — )\,4)
= max[O,—%(l -+ c?}y — c:]“):| (A4)

APPENDIX B: NEGATIVITY BETWEEN SPINS

Let ,53) 1® T)p(z) '51(12) has a form identical to Eq. (A1),
with ¢’ j — —C; , Y. The eigenvalues of 51(12) are

)»/1 = % 1— cicjx + cl)jy — cl.zjz),

M=1(1=cf =) +cf),

(
(
r_ 1 XX yy 2z)2 x)2
Ay = 4[1+cij \/(CU +cij) + 4(m*) ],
[

M= 14 +\/(c[y}’ +cE)? +4mo?]. (B
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FIG. 10. Network measures of the Rényi mutual information
network as a function of system size L for the TIM at T =0 at
different magnetic fields and Rényi order ¢. (a)—(f) plot the same
quantities as Fig. 3 versus system size L at # = 0,q = 1 (black
solid circles), h = J,q = 1 (blue solid diamonds), h = 1.5J,g = 1
(red solid squares), h = 0,q = 10 (black open circles),h = J,q = 10
(blue open diamonds), and & = 1.5/, = 10 (red open squares).
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Of these eigenvalues, 1) 5, are always positive. Since 1} +
Ay + A5+ Ay =1, we have

Tl =1 wl=a
= 12 = 12 L = min(0,1}).  (B2)

APPENDIX C: NETWORK MEASURES FOR RENYI
MUTUAL INFORMATION AT DIFFERENT SYSTEM SIZES

Figure 10 plots the network measures for the Rényi infor-
mation versus system size. All network measures converge to
their thermodynamic values as L increases.

In the thermodynamic limit in the ferromagnetic phase,
the Rényi information 77, = 0.5 is uniform with distance. It
follows that d and Cl are 0.5, and other network measures
converge to zero.

In the thermodynamic limit in the paramagnetic phase, I;;
decays rapidly with separation. Therefore d and CI converge to
0. The geodesic path from an arbitrary spin i to j in the Rényi
information network travels via all intervening spins i 4+ 1,i +
2,..j — 1. Assuming translational invariance, the length of this

3 o limil Dwx _ _1_ D _ 2
geodesic path is i It follows that =p» = 7—, £ = 7—,
B _ 1

ii+1 ii+1
q . . . . .
17 = 7, Where [}, is independent of ;. In the critical

region, d, Y, Cl, and % converge to 0 at large L, while %

and

and % saturate to a nonzero value.
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