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Analysis of continuous and discrete Wigner approximations for spin dynamics

Bhuvanesh Sundar,1,2,* Kenneth C. Wang,1,3,† and Kaden R. A. Hazzard1,2,‡

1Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA
2Rice Center for Quantum Materials, Rice University, Houston, Texas 77005, USA

3Department of Physics, Stanford University, Stanford, California 94305, USA

(Received 26 February 2019; published 26 April 2019)

We compare the continuous and discrete truncated Wigner approximations of various spin models’ dynamics
to exact analytical and numerical solutions. We account for all components of spin-spin correlations on equal
footing, facilitated by a recently introduced geometric correlation matrix visualization technique [Mukherjee
et al., Phys. Rev. A 97, 043606 (2018)]. We find that at modestly short times, the dominant error in both
approximations is to substantially suppress spin correlations along one direction.
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I. INTRODUCTION

The dynamics of quantum matter is linked to several
important phenomena in physics, such as thermalization or
lack thereof [1], dynamical phase transitions [2,3], and uni-
versality in out-of-equilibrium dynamics [4–8]. Understand-
ing these phenomena is challenging, partly due to the lack
of theoretical tools to accurately simulate them. There is
an urgent need for such tools because recent experiments
have made strides in measuring out-of-equilibrium dynam-
ics; see, for example, Refs. [9–23]. Several numerical meth-
ods, such as exact diagonalization [24–27], time-dependent
density-matrix renormalization group [28–32], perturbative
and Keldysh techniques [33–38], kinetic theories and phase-
space methods [39–42], and numerical linked-cluster expan-
sions [19,20,43–46], have been used to calculate such dynam-
ics. However, all these methods have limitations, ranging from
being restricted to small or low-dimensional systems to being
accurate only for weakly interacting, close-to-equilibrium, or
short-time situations.

In this paper we compare two popular and related semi-
classical approximations for the dynamics of quantum mat-
ter, namely, the continuous truncated Wigner approxima-
tion (TWA) and discrete truncated Wigner approximation
(DTWA) [47–50], with each other and with exact analytical
or numerical solutions. These approximations have been used
frequently in recent years to simulate the dynamics of spin
models [42,50–57], which are some of the most ubiquitous dy-
namics probed in experiments [9–23]. The approximations es-
timate the quantum expectation of observables as the average
over classical trajectories of initial phase-space points which
are sampled from the Wigner distribution associated with the
initial state. They are simple to implement and offer accuracy
consistent with being semiclassical expansions [50–52].

Earlier works [50,51] have argued that DTWA is a superior
approximation to calculate the dynamics of spin-spin corre-
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lations than TWA, based on specific examples considered.
As an example of a case where DTWA is superior, Fig. 1(a)
shows the dynamics of correlations of neighboring spins in a
one-dimensional (1D) Ising chain with no transverse field, ob-
tained from the exact solution, DTWA, and TWA. (The initial
conditions and Hamiltonians are described in the figure cap-
tion, while the DTWA and TWA calculations will be explained
later.) For this case, DTWA exactly captures the dynamics
of a specific component of spin correlations, while TWA is
accurate for this component only at relatively short times.

However, we must exercise caution when claiming that
one method is superior to another based on examples like
the ones above, especially because there are nine components
〈Ŝμ

i Ŝν
j 〉 − 〈Ŝμ

i 〉〈Ŝν
j 〉 (μ, ν ∈ {x, y, z}) of spin-spin correlations

to assess. In contrast to Fig. 1(a), Fig. 1(b) shows that even for
the same model, DTWA performs significantly worse and is
qualitatively wrong when we look at a different component of
the correlations and a different initial condition (described in
the figure caption). It is often not obvious which correlations,
if any, are the most important, especially in dynamics far from
equilibrium. Therefore, a more comprehensive comparison of
the two Wigner approximations is necessary.

The key finding in this paper is that both DTWA and TWA
suppress spin correlations along one direction for a broad class
of spin dynamics. We show strong numerical evidence for this
and then rigorously prove this for short times. We also find
that the accuracy of DTWA versus TWA is more nuanced than
simply one being better than the other. These insights are not
readily apparent from looking at plots of the nine Cartesian
components of spin-spin correlations. We are able to gain
insight into the workings of TWA and DTWA and isolate the
nuanced differences between them by utilizing the correlation
matrix visualization (CMV) technique, which was recently
introduced in Ref. [58] building on geometrical visualization
techniques in Refs. [59–78]. Correlation matrix visualizations
encode all the information contained in spin-spin correlations
into three-dimensional shapes and allow us to compare all
components of the spin-spin correlations on equal footing.

This article is organized as follows. In Sec. II we introduce
TWA and DTWA. In Sec. III we describe the tools and metrics
that we use to analyze the results of TWA and DTWA. In
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FIG. 1. Dynamics of one component of the spin-spin correlations
for the 1D Ising model with no transverse field [whose Hamiltonian
is Eq. (10)], obtained from the exact solution (black solid curve),
DTWA (blue curve with circles), and TWA (red curve with squares):
(a) Cyz

i j for an initial state with all spins along x and (b) Cxx
i j for an

initial state with all spins 45◦ between x and z; Cμν
i j is defined in

Eq. (8). The black and blue curves overlap in (a).

Sec. IV A we compare spin-spin correlation dynamics for the
exact solution, DTWA, and TWA applied to the Ising model
with no transverse field. In Sec. IV B we compare spin-spin
correlation dynamics calculated with these three methods for
the nearest-neighbor 1D transverse Ising and XX models.
In Sec. V we present a rigorous mathematical argument for
one of the key findings in Sec. IV, that DTWA and TWA
always suppress spin-spin correlations along one direction at
short times. We distill the lessons of these comparisons and
summarize in Sec. VI.

II. WIGNER APPROXIMATIONS

Wigner approximations approximate dynamics of quantum
systems. The implementation of the technique has three steps,
schematically illustrated in Fig. 2.

In the first step, we sample phase-space coordinates from
the Wigner function associated with the initial density ma-
trix ρ̂(0) = |ψ (0)〉〈ψ (0)|. The Wigner function, denoted by
W (S), is a quasiprobability distribution that represents ρ̂(0)
in an appropriate phase space, with phase points described by
coordinates S. The Wigner function W (S) is defined via

ρ̂ =
∫

dSW (S)Â(S), (1)

where Â is called a phase-point operator and the integral
runs over all of phase space. The phase-space coordinates
that describe motional degrees of freedom are position and
momentum. For spins, the coordinates can be the spin vector
elements (Sx, Sy, Sz ). (For spins, the choice of phase space
is not unique, and possible phase spaces are discussed in
Secs. II A and II B.) This step in the algorithm does not contain

FIG. 2. Illustration of Wigner approximations. The method con-
sists of three steps: (a) Randomly sample points in phase space
from the Wigner distribution for the initial state, (b) evolve the
phase points classically through time, and (c) calculate the desired
observable from the ensemble average of the observable at time t ,
evaluated from the time-evolved classical trajectories of the initial
phase-space points.

any approximation, as any observable in a quantum state can
be obtained by averaging over phase-space points sampled
from the Wigner distribution for that state.

In the second step, we evolve the sampled initial phase-
space points in time according to classical equations for the
spins. The equations of motion for the specific models we
consider [Eqs. (10), (15), and (17)] are given in Eqs. (11), (16),
and (18), respectively. We denote the classical trajectory of an
initial point S by Scl(S, t ).

In the third and final step, we calculate the expectation of
an operator Ô at time t by averaging over the trajectories of
the phase points as

〈Ô〉 =
∫

dS Wl(Ô, Scl(S, t ))W (S). (2)

Here Wl(Ô, S) is the Weyl symbol for Ô at the phase point
S. As examples, Wl(Ŝμ

i , S) = Sμ
i and Wl(Ŝμ

i Ŝν
j + Ŝν

j Ŝ
μ
i , S) =

Sμ
i Sν

j + Sν
i Sμ

j . The procedure to obtain the Weyl symbol for
other observables is more involved [49], but in this paper, we
only need the examples listed here.

The essence of the Wigner approximations lies in the
third step, where we estimate an observable at time t from
the classically evolved trajectories of the initial phase-space
points. While this step might be intuitive, nevertheless the
phase points at time t , which are evolved from the initial
phase points, do not sample the Wigner distribution of the
quantum state at t . It is for this reason that, sometimes, Wigner
approximations give results differing from the exact results.
The main purpose of this paper is to explore different cases
where the Wigner approximations give results differing from
the exact results, extract generic trends regarding how they
differ, and give a physical insight for these differences. We
focus on spin models in this paper.

Different Wigner approximations differ in their choice
of phase space. In this article we focus on two kinds of
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approximations with two different kinds of phase spaces:
TWA samples from a finite continuous area of phase space
and DTWA samples from a discrete set of phase points. We
describe these schemes in Secs. II A and II B, respectively.

A. The TWA

In (continuous) TWA [49], the initial values of the spins
are allowed to take any value in the continuous phase space
spanning the points (sx, sy, sz )⊗N , where N is the number of
spins. Reference [49] derives the Wigner function for the state
with all the spins pointing along the z direction to be

W (Stot ) ≈ 2

πN
exp

(
−

(
Sx

tot

)2 + (
Sy

tot

)2

N/2

)
δ
(
Sz

tot − N/2
)
, (3)

where Sμ
tot = ∑

i Sμ
i . Equation (3) is exact in the limit

N → ∞. Then the Wigner function for a single spin can be
taken to be

W (Si ) = 2

π
e−2(Sx

i )2−2(Sy
i )2

δ
(
Sz

i − 1/2
)
. (4)

This is one choice for the single-spin Wigner function that is
consistent with Eq. (3); other choices may be possible too.
When the system has spins all uniformly pointing along a
direction besides z at the initial time, we first initialize the
spins along z by sampling from Eq. (4) and then rotate all the
spins. We always assume that the spins initially point in the
x-z plane.

B. The DTWA

In DTWA [50,51], the initial phase space is chosen to be
a discrete set of points 
α = (
α1, 
α2, . . . , 
αN ), where 
αi is the
three-component spin vector for the ith spin. As a result, the
continuous integral in Eq. (2) is replaced by the sum

〈O〉(t ) =
∑


α
Wl(Ô, 
αcl(
α, t ))W
α, (5)

where 
αcl(
α, t ) is the classical trajectory of the initial phase
point 
α.

The discrete locations where the initial points 
αi can lie
are nonunique, and different works in the literature have made
different choices. For example, Ref. [50] describes the case
where the phase space for each spin consists of eight points
given by

S1 = 1
2 (1, 1, 1), S2 = 1

2 (−1,−1, 1), S3 = 1
2 (1,−1,−1),

S4 = 1
2 (−1, 1,−1), S4+r = −Sr (1 � r � 4). (6)

The phase-point operators are defined as Â
αi = 1
2 + 
αi · 
̂σ ,

where 
̂σ = (σ̂ x, σ̂ y, σ̂ z ) is the vector of Pauli matrices σ̂ μ

(μ = x, y, z). The phase-point operator for N spins is the
product Â
α = 	iÂ
αi . The Wigner function at 
α is W
α =
1

2N Tr(ρ̂Â
α ). We initialize the spins by sampling them from the
probability distribution |W
α|/∑

β |W
β |, and when calculating

the dynamics of an operator Ô, we multiply its Weyl symbol
Wl(Ô, 
α) by the sign of W
α .

There is flexibility to choose other discrete sets of points
in DTWA. Some of these choices are described in Ref. [52].
The dynamics of spin systems sampled from different discrete

phase spaces differ, as explored in detail in Ref. [52]. While
the phase spaces chosen in Ref. [52] and other references work
well for the models and initial conditions studied there, we
find that those phase spaces yield significantly worse results
for some of the models and conditions we consider in this
paper. Therefore, we use only the phase space comprised of
the phase points defined in Eq. (6). For this phase space,
the correlations in DTWA are accurate to linear order O(t ),
although as we explain later, differences from the exact dy-
namics appear at longer times. We have not explored the
question of finding the optimal phase space that will most
accurately approximate the dynamics in our study.

III. GEOMETRIC ANALYSIS OF THE SPIN
CORRELATIONS

The connected correlations between a pair of spins i and j
are

cμν
i j = 〈

Ŝμ
i Ŝν

j

〉 − 〈
Ŝμ

i

〉〈
Ŝν

j

〉
, μ, ν ∈ {x, y, z,+,−}, (7)

and their symmetric part is given by

Cμν
i j = cμν

i j + cνμ
i j

2
, (8)

where Ŝ±
j = Ŝx

j ±iŜy
j

2 . The correlation matrix Ci j is a 3 × 3
matrix with components Cμν

i j , μ, ν ∈ {x, y, z}.
Reference [58] introduced a geometric tool to visualize Ci j

using a three-dimensional contour called a CMV. We use this
tool to analyze the results of the Wigner approximations. We
define the CMV below, and refer the reader to Ref. [58] for a
detailed understanding of the CMV.

We define a function proportional to a homogeneous
quadratic polynomial

Qi j (r) = rT · Ci j · r
(1 + r2)3/2

, (9)

where r is a three-dimensional vector. The CMV is the
locus of points r where Qi j (r) has a constant magnitude,
Qi j (r) = ±P. Each sign is assigned a different color.
We shade points where Qi j (r) > 0 red and points where
Qi j (r) < 0 blue. Defining the correlation along the direction

n as Cnn
i j = 〈( 
̂Si · n)( 
̂S j · n)〉 − 〈
̂Si · n〉〈 
̂S j · n〉, the points on

the CMV along n can be obtained by solving the equation
|Cnn

i j /P| = (1 + r2)3/2/r2. This equation has exactly two
real solutions for r in the limit that |Cnn

i j /P| � 1, and these

solutions are r � |Cnn
i j /P| and r �

√
|P/Cnn

i j |. The size of the

CMV along this direction is the difference between these
solutions, which is roughly |Cnn

i j /P|. Based on this, we can
interpret the size of the CMV along n as being proportional
to Cnn

i j and therefore the lobes of the CMV point along the
eigenvectors of the matrix Ci j .

We characterize spin-spin correlations via four main fea-
tures of the CMV. These features are the CMV’s size, shape,
dimensionality, and orientation. The CMV’s size roughly
translates to the magnitude of the eigenvalues of Ci j . The
CMV’s shape is related to the ratio of the three eigenvalues
to each other. The shape generally falls into one of a few
categories, depicted in Fig. 3. When one of the eigenvalues
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FIG. 3. Typical CMV shapes for four different cases of the
correlation matrix written beside the CMV: (a) a dumbbell, (b) a
clover, (c) a sphere, and (d) a wheel and axle.

is much larger than the other two, the CMV has the shape of
a dumbbell, as in Fig. 3(a). When two eigenvalues are com-
parable, have opposite signs, and are larger than the third, the
shape is a clover, as in Fig. 3(b). When all three eigenvalues
are comparable, then the shape is a sphere or ellipsoid as in
Fig. 3(c) if they have the same sign, and the shape resembles
a wheel and axle as in Fig. 3(d) if one eigenvalue has a
different sign. The CMV’s dimensionality is contained in the
description of its shape, but this feature is so important in our
comparisons that we classify it separately. A dumbbell-shaped
CMV is “one dimensional,” a clover-shaped one is “two di-
mensional,” and a sphere is “three dimensional.” The CMV’s
orientation tells us the directions of the eigenvectors of Ci j .

The features described above, despite being qualitative,
nevertheless allow us to characterize the differences between
Wigner approximations and the exact dynamics, as well as to
identify the missing aspects of Wigner approximations. For
example, we observe distinct and fairly simple trends such as
that DTWA captures the revivals in the size of the CMVs more
accurately than TWA (as already shown in Refs. [50,51]).
Our most surprising finding is that both DTWA and TWA
suppress correlations along one direction, thereby reducing
the dimensionality of the CMV. On the other hand, the trends
for the accuracy of TWA and DTWA are less apparent in the
conventional way of plotting all components of the correlation
matrix. Appendix B shows the conventional componentwise
analysis of correlations for the dynamics considered in the
main text, so a curious reader can explore these themselves.

IV. RESULTS

In this section we compare the dynamics of spin-spin
correlations in DTWA, TWA, and the exact solution for var-
ious spin models. Specifically, in Sec. IV A we present the
spin dynamics in the nearest-neighbor Ising model with no
transverse field, in different dimensions, with different range
of interactions, and from different initial states. Section IV B
presents the spin dynamics in the 1D transverse-field nearest-
neighbor Ising model and the 1D nearest-neighbor XX model.

A. Ising model

First, we consider the Ising model

ĤI = −
∑
i 
= j

Ji j Ŝ
z
i Ŝz

j (10)

with arbitrary interactions Ji j . The time-dependent equations
for the quantum-mechanical spin operators are obtained from
Heisenberg’s equation i∂t Ŝ

μ
i = [Ŝμ

i , Ĥ ], resulting in

˙̂Sx
i = Ŝy

i B̂z
i ,

˙̂Sy
i = −Ŝx

i B̂z
i ,

˙̂Sz
i = 0, (11)

where B̂μ
i = ∑

j 
=i Ji j Ŝ
μ
j . The same equations give the classi-

cal equations of motion for DTWA and TWA as well, with
the quantum-mechanical operator Ŝμ

i replaced by its classical
counterpart Sμ

i . We initialize the system in the product state
|θθθ · · · 〉 with |θ〉 = cos θ |↑〉 + sin θ |↓〉. We consider two
different representative cases in the following sections: θ = π

2
and θ = π

4 .
First, we will analytically solve this model. Equations (11)

are integrable, and the solutions are

⎛
⎜⎝

Ŝ+
j (t )

Ŝ−
j (t )

Ŝz
j (t )

⎞
⎟⎠ =

⎛
⎜⎜⎝

e−iB̂z
j t 0 0

0 eiB̂z
j t 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎝

Ŝ+
j (0)

Ŝ−
j (0)

Ŝz
j (0)

⎞
⎟⎠. (12)

The time dependence of Ŝx
j and Ŝy

j can be trivially ob-

tained from Ŝ±
j . Note that B̂z

j commutes with ĤI and is

therefore a constant. Using the relation that 〈Ŝμ
i (0)Ŝν

j (0)〉 =
〈Ŝμ

i (0)〉〈Ŝν
j (0)〉 for i 
= j because the spins are initially inde-

pendent, we obtain the solutions

〈Ŝ+
j (t )〉 =

⎛
⎝∏

l 
= j

〈
e−iJjl t Ŝz

l
〉⎞⎠〈Ŝ+

j (0)〉,

〈Ŝ+
j (t )Ŝ+

k (t )〉 =
⎛
⎝ ∏

l 
= j,k

〈
e−i(Jjl +Jkl )t Ŝz

l
〉⎞⎠〈

Ŝ+
j (0)e−iJjkt Ŝz

j
〉

× 〈
e−iJjkt Ŝz

k Ŝ+
k (0)

〉
,

〈Ŝ+
j (t )Ŝ−

k (t )〉 =
⎛
⎝ ∏

l 
= j,k

〈
e−i(Jjl −Jkl )t Ŝz

l
〉⎞⎠〈

Ŝ+
j (0)eiJjkt Ŝz

j
〉

× 〈
e−iJjkt Ŝz

k Ŝ−
k (0)

〉
,

〈
Ŝ+

j (t )Ŝz
k (t )

〉 =
⎛
⎝ ∏

l 
= j,k

〈
e−iJjl t Ŝz

l
〉⎞⎠〈Ŝ+

j (0)〉〈e−iJjkt Ŝz
k Ŝz

k

〉
,

〈Ŝ−
j 〉 = 〈Ŝ+

j 〉∗,
〈Ŝ−

j (t )Ŝ−
k (t )〉 = 〈Ŝ+

j (t )Ŝ+
k (t )〉∗,

〈Ŝ−
j (t )Ŝ+

k (t )〉 = 〈Ŝ+
j (t )Ŝ−

k (t )〉∗,〈
Ŝ−

j (t )Ŝz
k (t )

〉 = 〈
Ŝ+

j (t )Ŝz
k (t )

〉∗
. (13)
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The Cartesian components of the magnetization and spin
correlations can be obtained from〈

Ŝx
j

〉 = 〈Ŝ+
j 〉 + 〈Ŝ−

j 〉,〈
Ŝy

j

〉 = −i(〈Ŝ+
j 〉 − 〈Ŝ−

j 〉),

Cxx
jk = C++

jk + C+−
jk + C−+

jk + C−−
jk ,

Cxy
jk = −i(C++

jk − C+−
jk + C−+

jk − C−−
jk ),

Cyy
jk = −(C++

jk − C+−
jk − C−+

jk + C−−
jk ),

Cxz
jk = C+z

jk + C−z
jk ,

Cyz
jk = −i

(
C+z

jk − C−z
jk

)
, Cμν

jk = Cνμ

jk .

(14)

All that remains is to evaluate the expectations in Eq. (13)
in the exact solution, DTWA, and TWA. In DTWA and TWA,
〈· · · 〉 should be interpreted as average over the classical phase-
space trajectories. Crucially, the explicit results for Eq. (13)
in DTWA and TWA differ from the exact solution. This is
because DTWA and TWA incorrectly estimate averages for
products of spin operators on the same site at the initial time. It
is worth noting that despite this crucial error, DTWA and TWA
still qualitatively capture much of the dynamics of spin corre-
lations, as we will see shortly. The mismatches with the exact
solution have simple trends, which we explore in this section.
The dynamics in DTWA can be much improved by going to
higher order in the BBGKY hierarchy (which also integrates
the Heisenberg equations for products of operators Ŝμ

i Ŝν
j ) and

choosing a different phase space (see, e.g, Ref. [52]).
We present explicit closed forms of Eq. (13) separately for

the exact solution, DTWA and TWA in Eqs. (A2), (A3),
and (A5) in Appendix A. Closed forms for the spin
correlations in the exact solution have also been calculated
in Refs. [79,80]. To numerically evaluate Eqs. (A2), (A3),
and (A5) for an arbitrary Ji j and θ , we assume a chain with
11 spins and periodic boundaries in the case of 1D models
and a 4 × 4 lattice with periodic boundary conditions for 2D
models.

For the other models we consider in Sec. IV B, the solu-
tions are more complicated although still integrable [81–83],
so we resort to numerically calculating the correlations. We
again show that the mismatch between DTWA, TWA, and
the exact solution has a simple trend. We also perturbatively
calculate Cμν

jk at short times in Sec. V for arbitrary spin models
and rigorously prove our numerical observation.

1. Nearest-neighbor 1D Ising model

First, we study the case θ = π/2 and nearest-neighbor
interactions in a 1D chain, Ji j = Jδ|i− j|=1. Figure 4 shows
the nearest-neighbor spin correlations for the exact dynamics,
DTWA, and TWA. We find that the shape and orientation of
the CMVs are captured well by both TWA and DTWA, and
the size is captured well at short times. All the CMVs have
a clover shape [as in Fig. 3(b)]. All the CMVs have the right
orientation: They all have large lobes along y + z and y − z.

Despite the similarities listed above, there are two main
differences between the exact solution, DTWA, and TWA. The
first difference is the well-known inability of TWA to capture
the periodic revivals present in the exact solution and DTWA.
In fact, DTWA was invented mainly to capture these periodic

TWADTWAExact tJ

x y

z
0

0.7

1.4

2.1

2.8

3.5

FIG. 4. The CMVs for nearest-neighbor spin-spin correlations at
different times in the nearest-neighbor 1D Ising model in the absence
of a transverse field, for the exact solution (left), DTWA (middle),
and TWA (right). At t = 0, all the spins are aligned along x, i.e.,
θ = π

2 . An animated movie showing this dynamics is included in the
Supplemental Material [84].

revivals [50,51]. The second difference these results reveal
is that in DTWA and TWA, the CMVs are two dimensional,
that is, the correlations vanish along the x direction. This can
be seen from looking at the components of the correlations
in Eq. (A5). We will see that these differences are general
features of spin model dynamics with product state initial
conditions.

Our observations in Fig. 4 about the inaccuracies of DTWA
and TWA, especially the missing Cxx

i j correlation, substantiate
our argument that it is important to look at all components of
the correlations while assessing these approximations. Plot-
ting specific components, as in Fig. 1(a), may be misleading
about the performance of the approximations. For the model
and initial condition considered here, the Cyz component in
Fig. 1(a), which may be viewed as a slice of the CMVs in
Fig. 4 along y+z√

2
(because Cyy

i j and Czz
i j are zero at all times),

coincidentally happens to be a component which DTWA cap-
tures accurately. These coincidences may not occur for other
models or initial conditions, as we will see in the following

043627-5



SUNDAR, WANG, AND HAZZARD PHYSICAL REVIEW A 99, 043627 (2019)

TWADTWAExact tJ

x y

z
0

0.4

0.8

1.2

1.6

2

FIG. 5. The CMVs for nearest-neighbor spin-spin correlations at
different times in the nearest-neighbor 2D Ising model in the absence
of a transverse field, for the exact solution (left), DTWA (middle),
and TWA (right). At t = 0, all the spins are aligned along x, i.e.,
θ = π

2 . An animated movie showing this dynamics is included in the
Supplemental Material [84].

sections, because the direction misrepresented by the Wigner
approximations is often not aligned along a Cartesian direc-
tion. All the nonzero Cartesian components of the correlations
are plotted in Fig. 12.

2. Dependence on dimension

It is a common expectation that semiclassical approxi-
mations perform better in higher dimensions, because the
Wigner function does not spread much with time, due to small
quantum fluctuations [49]. To address this, we next study
the case θ = π/2 and nearest-neighbor interactions in a 2D
lattice, Ji j = Jδ|
i−
j|=1.

Figure 5 shows the nearest-neighbor spin correlations for
the exact dynamics, DTWA, and TWA. We find that the com-
parison with the exact solution is similar to the 1D case: The
shape and orientation of the CMVs are captured well by both
TWA and DTWA and the size is captured well at short times.
Importantly though, the differences in the 1D Ising model also
persist in the 2D model: The CMVs in DTWA and TWA are
again two dimensional because the correlations completely

vanish along x, and the CMVs in TWA exponentially shrink
with time. In fact, we rigorously prove in Appendix A that
the CMV is two dimensional in DTWA and TWA in the
nearest-neighbor Ising model in an arbitrary dimension and
for any arbitrary initial state. Thus, although going to a higher
dimension may improve some aspects of the performance of
DTWA or TWA, it does not necessarily remedy the suppres-
sion of one correlation component. Further, we show in Sec. V
that the correlations along the initial Bloch vector in TWA and
DTWA are suppressed even for an arbitrary spin model in an
arbitrary dimension. All the nonzero Cartesian components of
the correlations for this model are plotted in Fig. 13.

3. Dependence on range of interaction

It is also commonly expected that semiclassical approxi-
mations perform better for models with long-range interac-
tions, again because the Wigner function does not spread
much with time, due to small quantum fluctuations [49].
To address this, we study two cases: first, Ising interactions
decaying as Ji j = J

r3
i j

in a 1D chain, which is typical in

experiments with particles with a dipole moment, and second,
infinite-range Ising interactions Ji j = J , as commonly realized
in ion trap experiments. In both cases, we consider the initial
state to have θ = π/2. The infinite range Ising model is well
studied in the literature and leads to one-axis twisting of the
total spin on the Bloch sphere [85,86].

Figure 6 plots the nearest-neighbor spin correlations for the
exact solution, DTWA, and TWA in the 1/r3 Ising model.
These CMVs also have clover shapes [as in Fig. 3(b)] and
are still nearly two dimensional. The component Cxx

i j is not
zero in DTWA and TWA, but is much smaller than it is in the
exact solution, as can be observed from the componentwise
plots in Fig. 14. We will return to a general understanding of
this suppression in Sec. V. The orientation of the CMVs is
captured well by DTWA and TWA, and their size is captured
well at short times.

Figure 7 plots spin-spin correlations for the exact solution,
DTWA, and TWA in the infinite-range Ising model. Here the
DTWA and TWA are capable of reproducing the dynamics at
short times. The physical reason for this is that the correlations
rapidly develop on a timescale tJ ∼ 1/

√
N (with N being

the number of spins), which is faster than the timescale
for nearest-neighbor Ising models, essentially because more
terms contribute to the dynamics. There is still a small sup-
pression of correlations, but this suppression is much smaller
than the magnitude of the correlations, because, as we show
in Sec. V, the suppression grows on a much slower timescale
tJ ∼ 1. As a result, TWA and DTWA appear to accurately
capture the initial rapid growth of correlations. The TWA and
DTWA will lead to a noticeable suppression of correlations
when tJ ∼ 1, as can be observed in the componentwise plots
in Fig. 15.

4. Dependence on distance between spins

In the models we study here, correlations in Wigner ap-
proximations generally get more accurate as the distance
between the two spins increases. Here we calculate the cor-
relations between next-nearest-neighbor spins in the nearest-
neighbor 1D Ising model, with spins initialized to |θ = π/2〉.
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FIG. 6. The CMVs for nearest-neighbor spin-spin correlations at
different times in the 1D Ising model in the absence of a transverse
field and 1

r3 Ising interaction, for the exact solution (left), DTWA
(middle), and TWA (right). At t = 0, all the spins are aligned along
x, i.e., θ = π

2 . An animated movie showing this dynamics is included
in the Supplemental Material [84].

Figure 8 shows the next-nearest-neighbor spin correlations
for the exact dynamics, DTWA, and TWA. In this case, DTWA
agrees perfectly with the exact solution, and this can also be
observed in the componentwise plots in Fig. 16. The CMVs
in the exact solution and DTWA are one dimensional, while
the CMVs in TWA are two dimensional, with a small Cxx

i j
component that is absent in the exact solution.

In all nearest-neighbor Ising models in an arbitrary dimen-
sion, and with no transverse field as considered throughout
this section, all components of the correlations between spins
with Manhattan distance greater than 2 are zero in the exact
solution, DTWA, and TWA. This can be easily verified from
Eqs. (A2), (A3), and (A5). Correlations between faraway
spins are generally not zero in long-range Ising models, and
DTWA and TWA are expected to perform well in capturing
the dynamics of these long-range correlations as the distance
between spins increases. This will get clearer from our rig-
orous arguments for the dependence of the suppression with
distance, which we will present in Sec. V.

TWADTWAExact tJ
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FIG. 7. The CMVs for spin-spin correlations at different times in
the infinite-range Ising model in the absence of a transverse field, for
the exact solution (left), DTWA (middle), and TWA (right). At t = 0,
all the spins are aligned along x, i.e., θ = π

2 . An animated movie
showing this dynamics is included in the Supplemental Material [84].

5. Dependence on initial states

The accuracy and efficiency (i.e., number of samples re-
quired) of Wigner approximations depend strongly on the
initial state. They become less accurate and significantly more
numerically challenging for initial states different from θ =
π/2 and θ = 0. To demonstrate their accuracy, we calculate
the nearest-neighbor correlations in the nearest-neighbor 1D
Ising model (which is integrable) for |θ = π/4〉.

Figure 9 shows the nearest-neighbor spin correlations in
the exact solution, DTWA, and TWA. The CMVs in both
Wigner approximations are again two dimensional at all
times, as observed in all nearest-neighbor interaction cases
above and as rigorously proven in Sec. V for short times and
Appendix A for all times. That is, correlations completely
vanish along one direction. More interestingly, for this case,
the suppressed direction rotates with time (for a closed-form
expression of the direction of the vanishing correlations, see
Appendix A). Aside from the two dimensionality, the shape
of the CMVs in the Wigner approximation reasonably agrees
with the exact solution. Again, as expected, the CMVs in
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FIG. 8. The CMVs for next-nearest-neighbor spin-spin correla-
tions at different times in the nearest-neighbor 1D Ising model in
the absence of a transverse field, for the exact solution (left), DTWA
(middle), and TWA (right). At t = 0, all the spins are aligned along
x, i.e., θ = π

2 . An animated movie showing this dynamics is included
in the Supplemental Material [84].

TWA exponentially shrinks in size, while the CMVs in DTWA
and the exact solution undergo periodic oscillations at a period
somewhat longer than the longest time presented in Fig. 9.
Further, there are also hints that the orientation of the CMVs
in TWA is closer to the exact solution than the DTWA’s is.
This is to be expected from looking at Fig. 1(b), for example,
which showed that even the initial dynamics of Cxx

i j in DTWA
differed significantly from the exact solution and TWA. All
the nonzero Cartesian components of the correlations are
plotted in Fig. 17.

The real advantage of visualizing the correlations as CMVs
is demonstrated by the dynamics considered here: Plotting
the CMVs clearly shows that DTWA and TWA completely
miss correlations along one eigendirection, a fact which is
obscured in the componentwise plots in Fig. 17 because the
misrepresented direction is not aligned along a Cartesian
direction.

For θ /∈ {0, π/2}, we note that DTWA presents a serious
numerical obstacle in its implementation: There is a sign
problem. The sign problem is notorious in quantum Monte
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FIG. 9. The CMVs for nearest-neighbor spin-spin correlations at
different times in the nearest-neighbor 1D Ising model in the absence
of a transverse field, for the exact solution (left), DTWA (middle),
and TWA (right). At t = 0, all the spins are aligned halfway between
x and z, i.e., θ = π

4 . An animated movie showing this dynamics is
included in the Supplemental Material [84].

Carlo algorithms, where it arises in fermionic systems as a re-
sult of negative wave functions due to anticommutations. The
sign problem arises in DTWA because the Wigner function is
negative at some of the phase-space points. In these cases, one
way to sample the initial points S in phase space is with the
weights |W (S)|∫

dS|W (S)| and then multiply the Weyl symbol for the
trajectory of S by the sign of W (S).

When the sign problem occurs, a sample size scaling
exponentially with N is required to obtain a precise ensemble
average (i.e., with a small sampling error) for any observable
in a system with N spins.1 While the results presented in this

1The sampling error for the Bloch vector, i.e., the variance of
the sample mean averaged over the classical trajectories, scales as
αN/Ns, with Ns the sample size, N the number of spins, and α =∑

Si
|P(Si )| the sum of absolute values of Wigner functions at the

initial phase points for a single spin. When θ 
= 0, π/2, α > 1, so
the sample error increases exponentially with N for fixed Ns.

043627-8



ANALYSIS OF CONTINUOUS AND DISCRETE WIGNER … PHYSICAL REVIEW A 99, 043627 (2019)

section were obtained from analytically integrating Eq. (11),
which is equivalent to implementing the Wigner approxima-
tions with an infinite sample size, a numerical implementa-
tion of the Wigner approximations would be computationally
expensive. For example, the sampling error for Cyy

i j at t = 0
for θ = π/4 and a sample size of 104 is 0.019. This error is
comparable to the magnitude of Cyy

i j during the dynamics and
therefore we do not get much useful information about the
correlation dynamics. The sampling error for Cyy

i j reduces to
0.003 for a larger sample size of 105. This obstacle is not
present for θ = π/2, where the sampling error for Cyy

i j for
a sample size of 104 is only 0.002. Other components have
similar errors for these sample sizes.

The sign problem in DTWA can be ameliorated by rotating
the phase space such that the Wigner function is always
positive at the initial phase points that are sampled. However,
due to the different alignment between these points and the
distinguished directions in the Hamiltonian (e.g., the z direc-
tion in the Ising model), the accuracy of the DTWA would
need to be reevaluated.

6. Summary of Ising models

Based on the integrable examples so far, we are able
to observe simple trends regarding Wigner approximations:
(a) For nearest-neighbor Ising models on a chain, square, or
cubic lattice, the approximations completely miss correlations
along one direction relative to the exact solution (this is true on
any bipartite lattice and is rigorously proven in Appendix A),
(b) for longer-range Ising models, the approximations sup-
press correlations in the same direction as the nearest-
neighbor case at short times, and, as expected, (c) correlations
in TWA exponentially decay with time. There are also hints
that the correlations are oriented incorrectly in DTWA for
initial states different from |θ = π/2〉. These trends were
elegantly captured by plotting CMVs, while they are obscured
in the componentwise correlation plots such as Fig. 1(b)
or 17. The TWA and DTWA are more accurate in capturing
correlations between spins that are far away from each other.
The TWA and DTWA also perform better for models with
long-range interactions, but their accuracy is limited to shorter
times, as can be observed in the infinite-range interaction case.
The TWA and DTWA have the same qualitative inaccuracies
in nearest-neighbor models in higher dimensions as they do in
one dimension.

Next we apply DTWA and TWA to the nearest-neighbor
1D transverse Ising model and the nearest-neighbor 1D XX
model. We will find that the discrepancies between the Wigner
approximations and the true dynamics have the same quali-
tative structure as observed in the zero-transverse-field Ising
model.

B. The XX and transverse Ising models

For the nearest-neighbor 1D transverse Ising model given
by

ĤT = ĤI − h
∑

i

Ŝx
i , (15)
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FIG. 10. The CMVs for nearest-neighbor spin-spin correlations
in a nearest-neighbor 1D transverse Ising (h = J/3) system at differ-
ent times, numerically calculated for the exact solution (left), DTWA
(middle), and TWA (right). At t = 0, all the spins are aligned along
x, i.e., θ = π

2 . An animated movie showing this dynamics is included
in the Supplemental Material [84].

the time-dependent equations for the spins are

˙̂Sx
i = Ŝy

i B̂z
i ,

˙̂Sy
i = −Ŝx

i B̂z
i + hŜz

i ,
˙̂Sz
i = −hŜy

i . (16)

Equations (16) are not analytically integrable. We numerically
integrate them on a periodic chain with 11 spins.

Figure 10 depicts the CMVs obtained from a numerical
implementation of exact diagonalization, DTWA, and TWA,
when the system is initialized in θ = π/2 and evolves under
the model with h = J/3. The size, shape, and orientation
of the CMVs in TWA and DTWA all approximately match
with the exact solution, but as in the h = 0 cases, the CMVs
are somewhat two dimensional in both approximations. That
is, the correlation along the direction perpendicular to the
obvious clover shape is still much smaller in DTWA and
TWA than it is in the exact solution. All the CMVs in these
dynamics precess around the magnetic field. All the nonzero
Cartesian components of the correlations are plotted in
Fig. 18.
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FIG. 11. The CMVs for nearest-neighbor spin-spin correlations
in a 1D system with an XX Hamiltonian, numerically calculated
for the exact solution (left), DTWA (middle), and TWA (right), at
different times. At t = 0, all the spins are aligned along x, i.e.,
θ = π

2 . An animated movie showing this dynamics is included in the
Supplemental Material [84].

For the nearest-neighbor (NN) 1D XX model given by

ĤXX = −J
∑

i

(
Ŝx

i Ŝx
i+1 + Ŝy

i Ŝy
i+1

)
, (17)

the time-dependent equations for the spins are

˙̂Sx
i = −Ŝz

i B̂y
i ,

˙̂Sy
i = Ŝz

i B̂x
i ,

˙̂Sz
i = Ŝx

i B̂y
i − Ŝy

i B̂x
i . (18)

Equations (18) are not analytically solvable either. We numer-
ically integrate them on a periodic chain with 11 spins.

Figure 11 depicts the CMVs obtained from a numerical
implementation of exact diagonalization, DTWA, and TWA
when the system is initialized in θ = π/2. The size, shape,
and orientation of the CMVs in TWA and DTWA all ap-
proximately match with the exact solution, but the CMVs
are again two dimensional in both approximations at short
times. Interestingly, at longer times, the direction along which
the correlations are dominantly suppressed in DTWA and
TWA seems to change somewhat independently of the CMVs’
orientations: The CMVs are more squished along x for

tJ < 2.1 and they are more squished along z for tJ > 2.1.
All the nonzero Cartesian components of the correlations are
plotted in Fig. 19.

V. WHY DO DTWA AND TWA SUPPRESS
CORRELATIONS?

We have observed a suppression of correlations in TWA
and DTWA for the Ising, transverse Ising, and XX models.
For the h = 0 Ising models, where we explicitly calculated
analytical expressions for the correlations, we attributed the
suppression to DTWA and TWA incorrectly estimating aver-
ages for initial products of spin operators. Here we present
a general argument that shows that in any spin model for
a generic initial product state |θθ · · · 〉, the spin correlation
along the initial spin direction n = sin θx + cos θz is always
suppressed in DTWA and TWA, at O(t2). That is, we will
show that

δCnn
i j,DTWA(t ) = ∣∣Cnn

i j,exact (t )
∣∣ − ∣∣Cnn

i j,DTWA(t )
∣∣ = At2 + O(t3)

(19)

for A > 0 and similarly for TWA, where Cnn
i j is the correlation

along the initial spin direction, defined as Cnn
i j = n · Ci j · n =

sin2 θCxx
i j + 2 sin θ cos θCxz

i j + cos2 θCzz
i j . [Note that there is

no error to O(t ).]
Our argument makes use of the numerical observation

that Cnn
i j,exact (t ) > 0 and Cnn

i j,DTWA(t ) � 0 at short times. There-
fore, to prove Eq. (19), it suffices to show that Cnn

i j,exact (t ) >

Cnn
i j,DTWA(t ) at O(t2).

We consider a general translationally invariant Hamilto-
nian with two-body interactions,

Ĥ = −
∑

iμ

hμŜμ
i −

∑
i 
= j

∑
μ

Jμ
i j Ŝ

μ
i Ŝμ

j , (20)

and the initial product state |θθ · · · 〉 as stated before. This
covers all the cases we have considered in this paper.

The time-dependent equation for any spin is

˙̂Sμ
i = εμνα Ŝν

i

(
hα + B̂α

i

)
, (21)

with ε the Levi-Cività tensor. We use the Einstein summation
convention for the greek indices throughout this section. At
short times, Ŝμ

i (t ) is [up to O(t2)]

Ŝμ
i (t ) = Ŝμ

i (0) + t ˙̂Sμ
i + t2

2
¨̂Sμ

i

= Ŝμ
i (0) + tεμνα Ŝν

i (0)
[
hα + B̂α

i (0)
]

+ t2

2
Ŝλ

i (0)
{
ενλβεμνα

[
hβ + B̂β

i (0)
][

hα + B̂α
i (0)

]
+ εμλαεανβJα

i j Ŝ
ν
j (0)

[
hβ + B̂β

j (0)
]}

, (22)

where ¨̂Sμ
i is obtained by differentiating Eq. (21).

We substitute Eq. (22) to calculate Cμν
i j (t ) in the exact

solution, TWA, and DTWA up to O(t2). We define

Sμ = 〈
Ŝμ

i (0)
〉
,

C
μν
2 = 〈

Ŝμ
i (0)Ŝν

i (0)
〉
,

C
μνλ
3 = 〈

Ŝμ
i (0)Ŝν

i (0)Ŝλ
i (0)

〉 (23)
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and use the relations

S
μ
exact = S

μ
DTWA = S

μ
TWA,

C
μν
2,exact = 1

4
δμν + i

2
Sαεμνα,

C
μν
2,TWA = C

μν
2,DTWA = 1

4
δμν.

(24)

We reemphasize that C2,exact is the quantum expectation of op-
erators, while C2,DTWA and C2,TWA are averages over classical
trajectories. Note that C3 can be written similarly to Eq. (24),
but there are more cases to write, so we do not present them
here.

It is straightforward to show that Cμν
i j (t ) in the exact solu-

tion, TWA, and DTWA are identical to each other at O(1) and
O(t ). Further, it can be verified, although somewhat tediously,
that the difference between the exact solution and the Wigner
methods arises at O(t2) and that the only terms that evaluate
to different results are

C′μν
i j (t ) = t2εμμ′αJα

i jJ
β
i j

[
ενν ′βC

μ′β
2 Cαν ′

2

+ 1
2εμ′λβSλ

(
C

βαν

3 + C
νβα

3

)
+ 1

2εαλβC
μ′β
2

(
Cλν

2 + Cνλ
2

)]
. (25)

The difference between TWA or DTWA and the exact
solution can then be evaluated using Eq. (24), yielding

δCxx
i j,DTWA(t ) = t2

4

{(
Sx

)2[
(Jy

i j )
2 + (

Jz
i j

)2] − (Sy)2Jx
i jJ

y
i j

− (Sz )2Jx
i jJ

z
i j

}
,

δCxy
i j,DTWA(t ) = t2

4

{
SxSyJz

i j

[
Jz

i j − 2(Sz )2
(
Jx

i j + Jy
i j

)]}
.

(26)

The other components can be found by cyclic permutation,
and δCi j,TWA(t ) can be similarly obtained from Eq. (24).
Specifically, setting (Sx, Sy, Sz ) = 1

2 (sin θ, 0, cos θ ),

δCnn
i j,DTWA(t ) = t2

16
(Jy

i j )
2 + t2

16

(
Jx

i j cos2 θ − Jz
i j sin2 θ

)2
,

δCnn
i j,TWA(t ) = t2

16
(Jy

i j )
2 + t2

16

(
Jx

i j cos2 θ + Jz
i j sin2 θ

)2
,

(27)

which are both non-negative. This proves that TWA and
DTWA always suppress correlations along the initial spin
direction at short times, for arbitrary spin models. Our results
in this section, which identify the error in TWA and DTWA
[Eq. (27)] and their source [Eq. (24)], could potentially open
avenues to modify the semiclassical equations to develop
more accurate approximations.

VI. CONCLUSION

We have demonstrated that the accuracy of Wigner approx-
imations is more nuanced than previously believed and uncov-
ered properties seemingly intrinsic to both TWA and DTWA,
namely, that they incorrectly predict suppressed correlations
along one direction. We presented a rigorous perturbative

TABLE I. Summary of DTWA’s and TWA’s abilities in capturing
different aspects of spin-spin correlation dynamics in a variety of
spin models. We categorize their ability to correctly capture the
overall size of CMVs at short times, revival of CMVs at longer times
(if applicable), the rough shape up to any suppressed correlations,
their 3D nature at short times (i.e., whether DTWA and TWA capture
the three dimensionality of CMVs present in the exact solution),
and orientation of CMVs. Any text in the cells means that only the
indicated method reasonably captures that category. The DTWA and
TWA never have three-dimensional CMVs at short times because one
correlation component is suppressed in all the cases.

Model Size Revivals Shape 3D nature Orientation

1D NN Ising � DTWA � × �
2D NN Ising � DTWA � × �
1D 1

r3 Ising � DTWA � × �
infinite-range Ising � DTWA � × �
NN Ising |θ = π

4 〉 � DTWA � × TWA
NN Ising C〈〈i j〉〉 � DTWA � �
TIM � � × �
XX � � × �

argument to explain the suppressed correlations at short times.
The suppressed correlations are often difficult to catch in
conventional componentwise plots due to the number and
complexity of the correlations and often a misalignment of
the suppressed correlation with any Cartesian directions. We
also found hints that the orientation of the correlations at short
times, at least when the spins do not initially point along a
special direction of the Hamiltonian, is sometimes more accu-
rate in TWA than in DTWA. We have systematically explored
the performance of DTWA and TWA by changing various
parameters, including the dimension of the model, the range
of interactions, the distance between the correlated spins,
and the initial state, as well as adding external fields to the
model, and found that the major source of error in all cases is
suppressed correlations along one direction. This observation
persists even in cases where semiclassical approximations are
expected to work well, such as higher dimensions and long-
ranged interactions, as well as other nonintegrable models
[such as the 2D transverse Ising model (TIM) with short- and
long-range interactions] that we have studied but not shown in
this paper. We have condensed these observations into Table I.
Understanding the capabilities of TWA and DTWA that we
have developed in this paper will better enable practitioners to
choose the approximations that are most suited to capture the
features they are interested in.
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APPENDIX A: ANALYTICAL SOLUTIONS FOR DYNAMICS IN THE ISING MODEL

Here we use Eq. (13) to obtain closed-form solutions for spin correlations in the exact solution, DTWA, and TWA.

1. Exact solution

To simplify and evaluate Eqs. (13) for the exact solution, we use the identity that

eiJŜz
j t = cos

Jt

2
+ 2iŜz

j sin
Jt

2
. (A1)

Further, for an initial state |θθ · · · 〉, we use the relations 〈
̂Si〉 = 1
2 (sin θ, 0, cos θ ). Finally, we use the group operations Ŝμ

j Ŝν
j =

iεμνλŜλ
k . Although familiar, it is important to emphasize these group operations in the exact solution, because they are not true

in DTWA and TWA.
Equations (13) yield

〈Ŝ+
j (t )〉exact = 1

4
sin θ

∏
l 
= j

(
cos

Jjl t

2
− i cos θ sin

Jjl t

2

)
,

〈
Ŝz

j (t )
〉
exact = 1

2
cos θ,

〈Ŝ+
j (t )Ŝ+

k (t )〉exact = 1

16
sin2 θ

∏
l 
= j,k

(
cos

(Jjl + Jkl )t

2
− i cos θ sin

(Jjl + Jkl )t

2

)
,

〈Ŝ+
j (t )Ŝ−

k (t )〉exact = 1

16
sin2 θ

∏
l 
= j,k

(
cos

(Jjl − Jkl )t

2
− i cos θ sin

(Jjl − Jkl )t

2

)
,

〈
Ŝ+

j (t )Ŝz
k (t )

〉
exact = 1

8
sin θ

(
cos θ cos

Jjkt

2
− i sin

Jjkt

2

) ∏
l 
= j,k

(
cos

Jjl t

2
− i cos θ sin

Jjl t

2

)
. (A2)

The special cases given in the text, i.e., the 1D Ising model
with nearest-neighbor and long-range interactions, the 2D
nearest-neighbor Ising model, and the 1D Ising model with
θ = π/2 and π/4, can all be evaluated by a directed substi-
tution of the appropriate Ji j and θ . These closed forms were
also given in Refs. [79,80].

2. The DTWA

In DTWA, the initial spin coordinates are Sμ
j = ± 1

2 . There-

fore, we again have the identity eiJSz
j t = cos Jt

2 + 2iSz
j sin Jt

2 .
However, we do not have the group operations of (Sx, Sy, Sz ).
In fact, for the choice of phase space in this paper,
〈Sμ

j (0)Sν
j (0)〉 = 1

4 (1 − δμν ), where δ is the Kronecker delta
and 〈· · · 〉 refers to the average over the sampled phase points.
Using these facts, Eqs. (13) yield

〈S+
j (t )〉DTWA = 〈Ŝ+

j (t )〉exact,〈
Sz

j (t )
〉
DTWA = 〈

Ŝz
j (t )

〉
exact,

〈S+
j (t )S+

k (t )〉DTWA = 〈Ŝ+
j (t )Ŝ+

k (t )〉exact cos2 Jjkt

2
,

〈S+
j (t )S−

k (t )〉DTWA = 〈Ŝ+
j (t )Ŝ−

k (t )〉exact cos2 Jjkt

2
,〈

S+
j (t )Sz

k (t )
〉
DTWA = 〈

Ŝ+
j (t )Ŝz

k (t )
〉
exact. (A3)

We find that the magnetization in DTWA agrees with the
exact solution at all times. However, only the correlation

components Cμz
jk and Czμ

jk (μ ∈ {x, y, z}) match with the exact
solution, while the components on the x-y plane generally
agree only at short times.

Two aspects of DTWA are immediately clear from the
solutions in Eq. (A3). The first is why DTWA performs
better in long-range Ising models. The difference between
the exact solution [Eq. (A2)] and the DTWA [Eq. (A3)] is
significant only at t ∼ 1/Jjk , while the timescale on which
correlations initially develop is much faster for long-ranged
interactions; for example, for the infinite-range Ising model,
correlations develop and the Bloch vector shrinks roughly
on a timescale t ∼ 1/J

√
N , where N is the total num-

ber of spins. Consequently, the discrepancy between the
exact solution and DTWA is largest for nearest-neighbor
models.

The second aspect that can be observed from Eq. (A3)
is the dimensionality of the CMVs. For example, it can be
verified that in a simple toy system with only two spins,
the matrix C12 always has an eigenvector along the direction
of (sin θ, 0, cos θ cos Jt

2 ) with zero eigenvalue and therefore
its CMV is always two dimensional. A similar statement
holds true for the nearest-neighbor Ising model in an arbi-
trary dimension. For the 1D Ising model, the Ci j matrix for
nearest neighbors i and j has an eigenvector along (1,− cos θ

tan Jt
2 , cot θ (1 − sin2 θ sin2 Jt

2 )) with a zero eigenvalue and
therefore this CMV is two dimensional as well. In the 2D
Ising model, the nearest-neighbor Ci j matrix has an eigen-
vector along (tan θ (cos2 Jt

2 − 3 cos2 θ sin2 Jt
2 ),− sin θ tan Jt

2
(1 + 2 cos Jt + sin2 Jt

2 sin2 θ ), (1 − sin2 θ sin2 Jt
2 )3) with a
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zero eigenvalue. The next-nearest-neighbor Ci j matrix has a
zero eigenvalue along z. In contrast, the CMVs for nearest-
neighbor correlations in the exact solution are all generally
three dimensional.

3. The TWA

In TWA, the initial phase points for the state |θ〉 are ob-
tained by rotating the phase points sampled from the Wigner
distribution associated with the state |π

2 〉. Thus,


Si(0) =

⎛
⎜⎝

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

⎞
⎟⎠

⎛
⎜⎝

Xi/2

Yi/2

1/2

⎞
⎟⎠ = 1

2
(sin θ + Xi cos θ,Yi, cos θ − Xi sin θ )T, (A4)

where Xi and Yi are Gaussian random variables with mean 0 and variance 1. Simplifications for eiJSzt or the group operations of
(Sx, Sy, Sz ) do not apply here. Therefore, the results in TWA differ from DTWA and the exact solution. Equation (13) yields

〈Ŝ+
j (t )〉TWA = 1

4
sin θ

∏
l 
= j

e−J2
jl t

2 sin2 θ/8,

〈
Ŝz

j (t )
〉
TWA = 1

2
cos θ,

〈Ŝ+
j (t )Ŝ+

k (t )〉TWA = 1

16
sin2 θ

(
1 + i

Jjkt cos θ

2

)2

e−J2
jk t2 sin2 θ/4−iJjkt cos θ

∏
l 
= j,k

e−(Jjl +Jkl )2t2 sin2 θ/8−i[(Jjl +Jkl )t cos θ/2], (A5)

〈Ŝ+
j (t )Ŝ−

k (t )〉TWA = 1

16
sin2 θ

(
1 + J2

jkt2 cos2 θ

4

)
e−J2

jk t2 sin2 θ/4−iJjkt cos θ
∏

l 
= j,k

e−(Jjl −Jkl )2t2 sin2 θ/8−i[(Jjl −Jkl )t cos θ/2],

〈
Ŝ+

j (t )Ŝz
k (t )

〉
TWA = 1

8
sin θ

(
cos θ − i sin2 θ

Jjkt

2

) ∏
l 
= j,k

e−J2
jl t

2 sin2 θ/8−i(Jjl t cos θ/2).

The magnetization and correlation reasonably (but not ex-
actly) agree with the exact solution at short times and expo-
nentially decay to zero.

Again, two aspects of TWA are immediately clear from
Eq. (A5). The first is that in long-range Ising models and
in higher dimensions, the exponential decay ∼e−NJ2t2

of
the correlations in TWA closely mimics the ∼ cosN Jt

2
decay of the correlations in DTWA and exact solution at
short times. The second aspect that can be observed is the
dimensionality of the CMVs. For a toy system with only two
spins, the correlation matrix C12 always has an eigenvector
along (cos( Jt

2 cos θ ),− sin( Jt
2 cos θ ), cot θe−J2t2 sin2 θ/8) with

a zero eigenvalue and therefore its CMV is always two
dimensional. For the nearest-neighbor 1D Ising model, the
nearest-neighbor Ci j matrix always has an eigenvector along
(cos(Jt cos θ ),− sin(Jt cos θ ), cot θe−J2t2 sin2 θ/4) with zero
eigenvalue. In the nearest-neighbor 2D Ising model, the
nearest-neighbor Ci j matrix always has an eigenvector along
(cos(2Jt cos θ ),− sin(2Jt cos θ ), cot θe−J2t2 sin2 θ/2) with zero
eigenvalue. In contrast, the CMVs for nearest-neighbor
correlations in the exact solution are all generally three
dimensional.

APPENDIX B: COMPONENTWISE PLOTS
OF SPIN CORRELATIONS

The main text compared TWA and DTWA with the exact
solution using CMVs and several clear observations stood out.
For example, the CMVs in the Wigner approximations were
two dimensional, vanishing completely in one direction for

nearest-neighbor Ising models with no transverse field, and
suppressed in all cases (although for infinite-range interac-
tions, the suppression becomes less pronounced as N → ∞).
Moreover, for the initial state |θ = π/4〉, there were hints that
orientation of the CMV was accurate only up to moderate
times in DTWA. The CMVs in TWA exponentially shrunk
with time for Ising models, as expected.
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FIG. 12. Nearest-neighbor spin correlations for a 1D periodic
chain of spins with the nearest-neighbor Ising interaction and ini-
tialized to |θ = π

2 〉: (a) and (b) the nonzero components of Ci j and
(c) and (d) eigenvalues of Ci j and the matrix norm of the difference in
correlation matrices ‖δCi j‖ = ‖Ci j,exact − Ci j,approx‖. The black curve
shows the exact solution, the blue curve with circles the DTWA, and
the red curve with squares the TWA.
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FIG. 13. Nearest-neighbor spin correlations for a 2D square lat-
tice of spins with the nearest-neighbor Ising interaction and initial-
ized to |θ = π

2 〉: (a) and (b) the nonzero components of Ci j and
(c) and (d) eigenvalues of Ci j and the matrix norm of the difference in
correlation matrices ‖δCi j‖ = ‖Ci j,exact − Ci j,approx‖. The black curve
shows the exact solution, the blue curve with circles the DTWA, and
the red curve with squares the TWA.

This Appendix presents the same comparisons by
conventional means, plotting each Cartesian component
separately. Although this is the same information as presented
in the main text, it is sometimes less clear from these
componentwise plots, or sometimes even completely
obscured, what information the Wigner approximations
correctly capture or miss, specifically, simple trends such as
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FIG. 14. Nearest-neighbor spin correlations for a 1D periodic
chain of spins with a long-range Ising interaction decaying with
distance as 1/r3 and initialized to |θ = π

2 〉: (a)–(c) the nonzero
components of Ci j , (d) eigenvalues of Ci j , and (e) matrix norm of
the difference in correlation matrices ‖δCi j‖ = ‖Ci j,exact − Ci j,approx‖.
The black curve shows the exact solution, the blue curve with circles
the DTWA, and the red curve with squares the TWA.
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FIG. 15. Spin-spin correlations for a systems of spins with
infinite-range Ising interaction and initialized to |θ = π

2 〉: (a)–(c) the
nonzero components of Ci j , (d) eigenvalues of Ci j , and (e) matrix
norm of the difference in correlation matrices ‖δCi j‖ = ‖Ci j,exact −
Ci j,approx‖. The black curve shows the exact solution, the blue curve
with circles the DTWA, and the red curve with squares the TWA.

the correlations along one direction being suppressed in all
the Wigner approximations. We also plot the eigenvalues of
Ci j to directly show that the correlations are suppressed along
one direction in DTWA and TWA.

Figures 12(a) and 12(b) plot all the nonzero Cartesian
components of the nearest-neighbor spin correlations, and
their eigenvalues, for a system initialized in |θ = π/2〉 and
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FIG. 16. Next-nearest-neighbor spin correlations for a 1D pe-
riodic chain of spins with the nearest-neighbor Ising interaction,
initialized to |θ = π

2 〉, and interacting with the nearest-neighbor Ising
interaction: (a) and (b) the nonzero components of Ci j and (c) and
(d) eigenvalues of Ci j and the matrix norm of the difference in
correlation matrices ‖δCi j‖ = ‖Ci j,exact − Ci j,approx‖. The black curve
shows the exact solution, the blue curve with circles the DTWA, and
the red curve with squares the TWA.

043627-14



ANALYSIS OF CONTINUOUS AND DISCRETE WIGNER … PHYSICAL REVIEW A 99, 043627 (2019)

1 2 3 4 5 6−0.1

0

0.1

Jt

C
ijxx

1 2 3 4 5 6−0.1

0

0.1

Jt

C
ijxy

1 2 3 4 5 6−0.1

0

0.1

Jt

C
ijxz

1 2 3 4 5 6−0.1

0

0.1

Jt

C
ijyy

1 2 3 4 5 6−0.1

0

0.1

Jt

C
ijyz

1 2 3 4 5 6−0.1

0

0.1

Jt

ei
gs

(C
)

1 2 3 4 5 6
0

0.05

Jt

||
C

||

(a) (b)

(c) (d)

(e)

(g)

(f)

FIG. 17. Nearest-neighbor spin correlations for a 1D periodic
chain of spins with the nearest-neighbor Ising interaction, initialized
to |θ = π

4 〉, and interacting with the nearest-neighbor Ising inter-
action: (a)–(e) the nonzero components of Ci j , (f) eigenvalues of
Ci j , and (g) matrix norm of the difference in correlation matrices
‖δCi j‖ = ‖Ci j,exact − Ci j,approx‖. The black curve shows the exact
solution, the blue curve with circles the DTWA, and the red curve
with squares the TWA.

evolving under the 1D Ising model with no transverse field.
Figures 13(a) and 13(b) and 14(a) and 14(b) plot the nonzero
components for the same initial state, and evolving under the
2D Ising model with no transverse field and the long-range
1/r3 1D Ising model, respectively. For these cases, the figures
clearly show that DTWA and TWA suppress the correlations
along x, because the suppressed component happens to be
along a Cartesian direction. The last two plots in each figure
show the eigenvalues of Ci j and the matrix norm of the differ-
ence in correlation matrices ||δCi j || = ||Cexact − CDTWA|| and
||δCi j || = ||Cexact − CTWA||, two indicators of the difference
between the DTWA, the TWA, and the exact solution.

Figure 15 plots the nonzero components of the spin-spin
correlations, their eigenvalues, and the different matrix norm
||δC|| for the same initial state and evolving under the infinite-
range Ising model. The correlations build up rapidly at short
times on account of the infinite range of the interaction, and
DTWA and TWA agree well with the exact solution at short
times. However, DTWA and TWA do not capture any of the
dynamics at longer times tJ ∼ π . Figure 15(d) shows that
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FIG. 18. Nearest-neighbor spin correlations for a 1D periodic
chain of spins initialized to |θ = π

2 〉 and interacting with a nearest-
neighbor transverse Ising model with h = J/3: (a)–(d) the nonzero
components of Ci j and (e) and (f) eigenvalues of Ci j and the matrix
norm of the difference in correlation matrices ‖δCi j‖ = ‖Ci j,exact −
Ci j,approx‖. The black curve shows the exact solution, the blue curve
with circles the DTWA, and the red curve with squares the TWA.

DTWA and TWA obtain the eigenvalues of Ci j reasonably
well.

1 2 3 4−0.1

0.

0.1

Jt

C
ijxx

1 2 3 4−0.1

0.

0.1

Jt

C
ijyy

1 2 3 4−0.1

0.

0.1

Jt

C
ijyz

1 2 3 4−0.1

0.

0.1

Jt

C
ijzz

1 2 3 4
−0.1

0.

0.1

Jt

ei
gs

(C
)

1 2 3 4
0

0.05

Jt

||
C

||
(a) (b)

(c) (d)

(e) (f)

FIG. 19. Nearest-neighbor spin correlations for a 1D periodic
chain of spins initialized to |θ = π

2 〉 and interacting with the nearest-
neighbor XX model: (a)–(d) the nonzero components of Ci j and (e)
and (f) eigenvalues of Ci j and the matrix norm of the difference in
correlation matrices ‖δCi j‖ = ‖Ci j,exact − Ci j,approx‖. The black curve
shows the exact solution, the blue curve with circles the DTWA, and
the red curve with squares the TWA.
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Figure 16 plots the nonzero components of the next-
nearest-neighbor correlation, its eigenvalues, and the different
matrix norm ||δC|| for the same initial state and evolving
under the nearest-neighbor 1D Ising model. While there is
only nonzero component for the exact solution and DTWA
(which captures the exact solution accurately), there are two
nonzero components in TWA. The TWA overestimates one of
the components, and therefore one of the eigenvalues, of Ci j .

Figure 17 plots the nonzero components of the nearest-
neighbor spin correlations, their eigenvalues, and the different
matrix norm ||δC|| for the initial state |θ = π/4〉 evolving
under the nearest-neighbor 1D Ising model with no transverse
field. In contrast to all the cases above, where the suppressed
correlations in DTWA and TWA could be clearly observed in
the componentwise plots, it is nontrivial in this case to deduce
that the correlations are suppressed along one direction from
looking at the componentwise plots. The fact that correlations
are completely suppressed along one direction is noticeable
only by plotting the eigenvalues of Ci j in Fig. 17(f), and even
this figure is not helpful in arriving at a physical explanation

for where and why the correlation is suppressed. On the other
hand, the CMVs in Fig. 9 immediately show that DTWA
and TWA again completely suppress correlations along one
direction, that this direction is aligned with the spins at short
times, and that the suppressed direction then precesses with
time, all of which is obscured by the componentwise plots.

Figure 18 plots all the nonzero components of the nearest-
neighbor spin correlations, their eigenvalues, and the different
matrix norm ||δC|| for the initial state |θ = π/2〉 evolving
under the 1D transverse Ising model with h = J/3. The plots
show that the dominant error in DTWA and TWA is again
to partially suppress the correlations along x. The correla-
tions also precess about x, a fact which is not visible from
Fig. 18 but is immediately apparent in Fig. 10. Figure 19
plots all the nonzero components of the nearest-neighbor spin
correlations, their eigenvalues, and the different matrix norm
||δC|| for the initial state |θ = π/2〉 evolving under the 1D XX
model. The correlations in DTWA and TWA are suppressed
along x for tJ � 2 and along z for tJ � 2.
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