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Numerical linked cluster expansions for inhomogeneous systems
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We develop a numerical linked cluster expansion (NLCE) method that can be applied directly to inhomo-
geneous systems, for example, Hamiltonians with disorder and dynamics initiated from inhomogeneous initial
states. We demonstrate the method by calculating dynamics for single-spin expectations and spin correlations in
two-dimensional spin models on a square lattice, starting from a checkerboard state. We show that NLCE can
give moderate to dramatic improvement over an exact diagonalization of comparable computational cost and
that the advantage in computational resources grows exponentially as the size of the clusters included grows.
Although the method applies to any type of NLCE, our explicit benchmarks use the rectangle expansion. Besides
showing the capability to treat inhomogeneous systems, these benchmarks demonstrate the rectangle expansion’s
utility out of equilibrium.
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I. INTRODUCTION

The presence of inhomogeneity in a quantum system can
drastically alter its properties. One well-known example is
Anderson localization, where a particle in a disordered lattice
fails to diffuse, instead remaining trapped in a localized region
of space [1]. More recently, there has been significant interest
in a counterpart to Anderson localization in interacting many-
body systems [2–5]. Contrary to traditional assumptions of
statistical physics, such many-body localized systems can
preserve spatial inhomogeneities from their initial condition,
never fully reaching thermal equilibrium. Studying these sys-
tems could lead to fundamental advancements in statistical
physics, exotic materials like Floquet time crystals [6–8], and
stabilizing mechanisms for quantum memory [9–11].

Unfortunately, theory is lagging behind experiment for dis-
ordered quantum systems. Due to superposition, the Hilbert
space dimension of a quantum system increases exponentially
with system size. The lack of symmetry in inhomogeneous
systems makes computations even more challenging. Various
state-of-the-art numerical methods exist, but they are usually
limited in applicability. For example, tensor network methods
have had widespread success in one and two dimensions
[12], including in one-dimensional (1D) disordered systems
[13–16], but the area law of entanglement and the apparent
need for large bond dimensions in three dimensions have thus
far hindered application in higher dimensions [17]. Another
example is quantum Monte Carlo (QMC) simulation [18–23].
Quantum Monte Carlo is not as limited by dimension but
suffers from the sign problem in many systems, including
systems with fermions, frustrated systems, and for dynam-
ics. A third example is the nonequilibrium Green’s function
approach, which has been shown to work well for out-of-
equilibrium systems in any number of spatial dimensions, but
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only in the regime of weak to moderate interactions [24,25].
There are also a number of other methods, each with unique
limitations. Exact diagonalization (ED) remains one of the
only truly general tools for many-body quantum simulation,
but it also rapidly becomes infeasible as system size grows.
Improved numerics is needed for studies of inhomogeneous
systems, especially in higher dimensions.

One technique that has seen much use in translationally
invariant systems is the numerical linked cluster expansion
(NLCE). Numerical linked cluster expansion has been widely
used to calculate equilibrium properties in uniform infinite lat-
tices, for many common models such as spin models [26–30]
and fermionic models [31–35]. It is the method of choice
for treating some systems of immense importance, for exam-
ple, the strong-coupling, finite-temperature Fermi-Hubbard
model, which is ubiquitous in ultracold matter [35–37]. Re-
cently, NLCE has also been demonstrated in a wide range of
nonequilibrium scenarios, including dynamics [38–41], long-
time results after a quench [42–46], driven-unitary systems
[47], and driven-dissipative systems at steady state [48].

Although NLCE has been extended to disordered systems,
it has faced serious difficulties. References [49,50] showed
that NLCE can be used in systems with binary disorder and
Ref. [51] extended this to approximating continuous disorder
via carefully chosen discrete disorder levels. However, these
methods are computationally expensive, as they require aver-
aging over all possible disorder configurations and thus incur
a cost that grows exponentially with system size. This cost
multiplies the already exponentially growing cost of NLCE in
uniform systems.

In this paper we introduce a generalized NLCE algorithm
that can be used to calculate local properties on arbitrary
inhomogeneous lattices, which allows one to treat discrete
or continuous disorder without exponentially expensive av-
eraging and also allows for spatial inhomogeneities in the
initial state for dynamics. This approach has been used in a
limited capacity by Devakul and Singh in Ref. [52] to compute
ground-state entanglement entropy in disordered systems, but
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the full extent of its applicability to local observables and
to dynamics with inhomogeneous initial conditions was not
recognized therein. We focus on dynamics, but the ideas apply
to equilibrium and steady-state calculations as well. Inciden-
tally, our primary NLCE uses a rectangle-based expansion
[28], which offers a favorable tradeoff between accuracy and
efficiency, and the calculations in this paper demonstrate its
applicability to dynamics.

Section II discusses the numerical methods used in this
paper, including the NLCE algorithm and its variants, as well
as the models we use for benchmarking. In particular, Sec. II C
introduces the main result of this paper: the inhomogeneous
NLCE. Section III presents the results of our benchmark
tests for the inhomogeneous NLCE, primarily comparisons to
ED for a variety of dynamics calculations in inhomogeneous
conditions. Section IV concludes and offers potential routes
of improvement for the inhomogeneous NLCE.

II. METHODS

A. Homogeneous NLCE

Numerical linked cluster expansions are a class of methods
introduced in Refs. [26,27,31] for approximating observables
on an infinite lattice by combining results from a collection
of finite subclusters. This method exactly reproduces high-
temperature series results (or short-time expansion results,
in the case of dynamics) to an order determined by the
class of clusters that are included, but has better conver-
gence properties because the clusters are solved exactly rather
than perturbatively. Reference [53] provides a pedagogical
introduction.

Traditionally, NLCE has been used to compute the average
value of an extensive observable A in a thermodynamically
large lattice L. For a subcluster c ⊆ L, define

P(c) ≡
∑

i∈c

〈Ai〉c, (1)

where the local observable 〈Ai〉c is summed over all sites i in
c and the expectation value is taken in the isolated cluster c,
i.e., assuming no interactions between sites in c and outside
of c. The observable of interest is the average value over all N
sites in the lattice,

A ≡ P(L)/N. (2)

The key idea of NLCE is to treat A as a sum of contribu-
tions from all possible subclusters. To do this, we first define
the contribution or weight from cluster c, W (c), recursively by

W (c) ≡ P(c) −
∑

s⊂c

W (s), (3)

with the base case being a single-site cluster c1 where
W (c1) = P(c1).

Intuitively, W (c) represents the “nonadditive” correction
to the true property value P(c) not accounted for by simply
summing effects from smaller subclusters within c. Hence,
if c has n sites, W (c) can be interpreted as a contribution
to P(c) that arises from n-body correlations in c. This has
two important consequences. First, W (c) can be nonzero only
if c is a connected subcluster, since there cannot be n-body

correlations if some sites are isolated from others. This can be
proven rigorously by induction for a cluster c assembled from
two disjoint subclusters c1 and c2, using the fact that

P(c) = P(c1) + P(c2). (4)

The proof is sketched in Ref. [53]. Thus, we only need to
include linked clusters in the sum in Eq. (3). Second, for
a system with correlations that decay rapidly with separa-
tion outside of some correlation length, we can expect that
W (c) → 0 quickly as c becomes large.

Rearranging terms in Eq. (3) gives

P(c) =
∑

s⊆c

W (s). (5)

In the limit c → L, we recover an exact infinite summation
for P(L). This leads to the NLCE, which approximates this
infinite series with a finite truncation by some metric of cluster
size |c| (to be described momentarily),

A = 1

N
P(L) ≈

∑

|c|�n

W (c), (6)

where each cluster shape c is included in this sum only once,
not each of its translations. Since each shape c has N possible
translations (up to subleading corrections for N → ∞), this
leads to the 1/N multiplying P(L). The sum in Eq. (6) usually
converges rapidly because typically W (c) → 0 rapidly as
|c| → ∞. We note that for efficiency, one may use symmetry
or topological equivalence to save from solving equivalent
clusters multiple times.

This truncation remains reasonable so long as the sum
of weights from truncated clusters is small. Heuristically, an
NLCE of order n (which involves ∼n sites) can capture cor-
relations between sites separated by a distance O(n), whereas
ED requires nd sites, where d is the number of spatial dimen-
sions. In equilibrium calculations, the order required usually
grows as temperature is lowered, since increasingly long-
range correlations can exist [26,53]. In dynamics calculations,
the same is true as time grows, and correlations have been able
to spread across the system [38].

B. Rectangle expansion

Equation (6) can give rise to various summations, depend-
ing on how one defines the class of clusters to sum over, which
is mostly arbitrary as long as it is done consistently in Eqs. (3)
and (6). One approach is a site-based expansion, which allows
all connected subclusters of the lattice. For models with
next-nearest-neighbor (or even longer-ranged) interactions, a
similar approach involves restricting subclusters to be maxi-
mally connected [46]. A simpler approach on square lattices
is the rectangle expansion [28], which allows only rectangular
clusters of the shape s1 × · · · × sd in d dimensions. There are
also approaches based on other enumerations like plaquettes
[48,51,54–56], which allow geometries built from a unit cell
larger than one site, such as a 2 × 2 square.

The site expansion is a natural choice of NLCE, and a site
expansion including terms up to n sites is likely the most
accurate enumeration among those that include clusters of
n sites or less, since it includes the most information about
subclusters. However, the site expansion has drawbacks due
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to the exponential [57] growth of the number of clusters with
the number of sites involved. At higher orders, enumerating
the clusters becomes prohibitively expensive and the compu-
tational cost of simulating so many subclusters starts to out-
weigh the benefits over a simple ED. Furthermore, the large
number of clusters leads to summations with many terms,
which can cause numerical instability. In practice, the number
of clusters can be reduced due to topological equivalences
between them [53], but this only delays the problem.

Although our general method for calculating properties in
inhomogeneous systems applies to any NLCE enumeration
scheme, our numerical results in this paper focus on the
rectangle expansion, which circumvents the aforementioned
issues with the site expansion at the expense of slower order-
by-order convergence. We quantify rectangle size by average
side length and define an NLCE of order n to include contri-
butions from rectangles of sizes no greater than n.

C. Inhomogeneous NLCE

We now describe a natural extension to NLCE in systems
that break translational invariance, either through the system
Hamiltonian or through the initial conditions in a dynamics
calculation.

Consider an arbitrary lattice where every site is potentially
unique, in which we are interested in measuring a local
observable 〈AM〉 supported on a finite set of sites M. For
example, for a spin-1/2 system, if AM is σ z

k , the usual z
component of spin at site k, then M = {k}. If AM is a two-point
correlation between sites i and j, then M = {i, j}.

For a cluster shape c, define an extensive (in the cluster size
|c|, for large |c|) property

P(c) =
∑

t∈TM (c)

〈AM〉t , (7)

where TM (c) is the set of translations t of c within L such that
M ⊆ t and 〈AM〉t is the expectation of AM as computed on the
isolated cluster t . A key consequence of this definition is that
P(L)/N = 〈AM〉, with the expectation value taken on the full
lattice L; the quantity on the right-hand side is what we wish
to calculate.

With this definition of P(c), we can define W (c) as in
Eq. (3). Note that Eq. (4) remains valid under the definition
of P(c) in Eq. (7), meaning that the weights of unconnected
clusters vanish in the inhomogeneous case, just as in the
homogeneous case (the proof is the same). Thus the NLCE
approximation becomes

〈AM〉 ≈
∑

|c|�n

W (c). (8)

Figure 1 depicts the inhomogeneous NLCE, using the
rectangle expansion. The right-hand side of Eq. (8) is the same
as in Eq. (6), but the quantity being approximated can be an
arbitrary observable instead of just the average value of an
extensive observable. For a homogeneous lattice, this formula
reduces to the homogeneous NLCE. We focus on dynamics in
this paper, but Eq. (8) can just as easily be used for equilibrium
and steady-state calculations.

The flexibility to handle inequivalent sites in inhomoge-
neous systems comes at the price of needing to simulate

FIG. 1. NLCE for a single-site measurement in an inhomoge-
neous system, using the rectangle expansion. For each cluster shape,
weights are computed for every possible translation that contains the
measured site. Weights are summed as in the homogeneous NLCE.

more clusters per NLCE order, since translated clusters of the
same shape are no longer identical. Furthermore, topological
and symmetry equivalences can no longer be exploited to
reduce the number of clusters in general (although if the
inhomogeneous system still has some symmetries, they can
still be utilized). For the rectangle expansion, if the largest
cluster contains N sites, then the inhomogeneous NLCE is
roughly N times as expensive as the homogeneous NLCE. For
the site expansion, this factor is greater than N due to the loss
of topological equivalence.

Despite the extra cost of the inhomogeneous NLCE, it still
provides an exponential improvement over previous NLCE
methods for simulating disorder [49–51], which require av-
eraging over all disorder realizations and are mN times as
expensive as the homogeneous NLCE given m discrete dis-
order levels. Additionally, the cost is somewhat mitigated
by the NLCE being trivially parallelizable, regardless of the
expansion used.

Often the average under many disorder realizations is
the quantity of interest [5]. Since one can compute single-
realization behavior with the inhomogeneous NLCE, it is
straightforward to calculate both disorder averages and statis-
tical error estimates. Achieving a relative statistical error ε in
the disorder average requires only a finite number, O(1/ε2), of
realizations and so does not impact the exponential improve-
ment achieved by this method.

D. Models

We benchmark and illustrate the inhomogeneous NLCE
by computing time dynamics in two models. We have cho-
sen these models primarily for their simplicity and physical
relevance and they also lead to interesting behaviors in their
own right. We focus on 2D square lattices for both models,
with brief comparisons to 1D chains. The scenario is depicted
in Fig. 2.

The first model is the nearest-neighbor XXZ model with
continuous disorder, a prototypical model for studies of many-
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FIG. 2. Illustration of one physical scenario we use to test and
benchmark the inhomogeneous NLCE. A spin-1/2 square lattice is
initialized in a checkerboard state and then time evolved with XXZ
interactions and a disordered longitudinal field hi applied at each
site i. The hi are drawn from a continuous uniform distribution on
the range [−D, +D], for some disorder strength D.

body localization,

ĤXXZ = −
∑

〈i, j〉

[
J⊥

(
σ x

i σ x
j + σ

y
i σ

y
j

) + Jzσ
z
i σ z

j

] +
∑

i

hiσ
z
i ,

(9)
where the disordered field values hi are drawn from a contin-
uous uniform distribution within [−D, D]. Various values of
disorder strength D are investigated. For Jz = 0, this model
can be mapped to the hard-core (strongly interacting) limit of
a disordered Bose-Hubbard model, which has been realized in
ultracold-atom experiments [58–61]. In one dimension, it can
also be mapped to a system of interacting spinless fermions
via a Jordan-Wigner transformation [5]. This disordered XXZ
model is believed to have a many-body localized phase at
strong enough disorder [62–66].

The second model is the nearest-neighbor transverse Ising
model with continuous longitudinal disorder,

ĤIsing = −J
∑

〈i, j〉
σ z

i σ z
j − h

∑

i

σ x
i +

∑

i

hiσ
z
i . (10)

Ising models are well studied in condensed-matter physics
since they have a relatively simple form but can display a wide
variety of interesting phenomena. For example, the model
above, which has been realized experimentally in the insu-
lating dipole-coupled Ising magnet LiHoxY1−xF4 [67–69],
is generally thought to exhibit a quantum spin glass phase,
although this has recently been the subject of much debate
[70,71].

We consider spin dynamics from some initial quantum
state when evolved under one of the aforementioned Hamil-
tonians. Unless explicitly noted, the initial state is a spatially
nonuniform, checkerboard product state

|ψ (0)〉 =
⊗

i

|(−1)xi+yi〉i, (11)

where σ z
i |±1〉i = ±1|±1〉i. Note that since this state breaks

translational symmetry, it is incompatible with the traditional
NLCE. Furthermore, there is nothing special about this state
from the point of view of the inhomogeneous NLCE; any
inhomogeneous initial condition, such as a domain wall or

a random configuration, can be accommodated. We will also
briefly show results initiated from uniform product states for
comparison.

III. BENCHMARK RESULTS

Figures 3(a) and 3(b) show the main numerical results of
this work, demonstrating the validity of the NLCE derived
in Sec. II C and showing its increased accuracy relative to
ED calculations requiring solution of clusters up to a similar
number of sites. Figure 3(a) shows time dynamics for 〈σ z〉
at a single site when evolved under a single realization of
ĤXXZ , starting from the checkerboard initial state. Note that
an NLCE of order 4 is comparable in computational cost to
a 4 × 4 ED, since the largest diagonalized system in each
contains 16 sites. The times at which these two curves diverge
from the corresponding next-highest-order results (order 3.5
NLCE and 3 × 3 ED, respectively) indicate the accuracy of
the two methods. The fourth-order NLCE closely agrees with
order 3.5 for times until J⊥t ∼ 0.25, suggesting that it is
accurate for (at least) J⊥t � 0.25. On the other hand, the 4 × 4
ED diverges from the 3 × 3 ED at J⊥t ∼ 0.15, suggesting
that it is less accurate than the fourth-order NLCE. In fact,
the first deviations occur later for the order 3 NLCE than
for the 4 × 4 ED, even though this NLCE requires solving
at most a 9-site cluster, which requires significantly fewer
computational resources than the 16-site ED (roughly a factor
of 27 ∼ 100 in time and memory). Figure 3(b) shows similar
results, but for ĤIsing. We stress that although NLCE involves
solving multiple clusters instead of just one cluster as in ED,
the incurred cost is relatively modest because it is trivially
parallelizable and also rapidly compensated for by the reduced
n needed by NLCE, which provides an exponential reduction
in computational cost.

Figure 3(c) demonstrates a conclusion tangential to the
main focus of this paper: In the traditional homogeneous case,
the rectangle expansion NLCE is still applicable to dynamics
calculations and can be more accurate than ED. Although
the rectangle expansion has been demonstrated in equilibrium
[28], NLCEs for dynamics have thus far relied solely on
site expansions and maximally connected expansions [38–40].
The panel shows time dynamics for 〈σ x

i 〉 in a uniform system
initialized in the state |ψ (0)〉 = ⊗

i |+x〉i (where σ x
i |+x〉i =

|+x〉i) and evolved under ĤXXZ with D = 0. Like in Figs. 3(a)
and 3(b), NLCE visibly outperforms ED.

Figures 3(d)–3(f) quantify the convergence of results in
Figs. 3(a)–3(c). As each NLCE contains clusters of varying
sizes, we define n as the maximum number of sites over all
clusters. Here �n is a proxy for finite-size error, defined as

�n =
∣∣∣∣
〈σ (τ = 0.25)〉n − 〈σ (τ = 0.25)〉nprev

n − nprev

∣∣∣∣, (12)

where σ is σ z
0 or σ x

i , τ is J⊥t or Jt , nprev is the value of n at
the previous order, and 〈σ 〉n is the estimate for 〈σ 〉 generated
by the size-n approximation. We also tried other methods for
estimating error (including fitting 〈σ 〉n to a true value plus
an exponentially decaying error term and different normaliza-
tions of �n with the intervals between n), but the conclusions
are robust. In all three systems, the NLCE converges faster
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FIG. 3. (a)–(c) Time evolution of a single spin in various models, computed by rectangle NLCE of orders 3, 3.5, and 4 [blue, orange, and
yellow solid curves: bottom, top, and middle in (a) and (c) and top, middle, and bottom in (b)]. EDs from 3 × 3 and 4 × 4 lattices (purple
and green dashed curves: bottom and top) are provided for reference. (a) ĤX X Z with Jz = 0.15J⊥ and D = J⊥, measuring 〈σ z

0 〉 where site 0 is
associated with |+1〉 in the checkerboard pattern. (b) ĤIsing with h = D = J , with the same measurement as in (a). (c) ĤX X Z with Jz = 0.15J⊥
and D = 0, with initial state |ψ (0)〉 = ⊗

i |+x〉i, measuring 〈σ x
i 〉 for one site. (d)–(f) Proxy for finite-size error �n in (a)–(c) for rectangle

NLCE (blue solid curve), ED (orange dashed curve), and site NLCE (yellow dotted curve). Since each NLCE uses multiple EDs of various
sizes, n is defined as the number of sites in the largest ED used. Here �n is the absolute difference between approximations at order n and the
previous order at fixed time J⊥t , Jt = 0.25, normalized by the change in n.

than ED. Figure 3(f) confirms that the rectangle expansion is
in between the site expansion and ED in performance. These
conclusions are not special to τ = 0.25 and hold at other times
up to those at which the methods become inaccurate.

Figure 4 shows that the improved convergence of NLCE is
not limited to a single disorder realization and remains when
computing disorder averages. The system is the same as in

FIG. 4. Disorder-averaged time evolution of 〈σ z
0 〉 for the system

in Fig. 3(a), computed over ten independent disorder realizations
using NLCE of orders 3.5 (orange dotted curve) and 4 (blue solid
curve), and ED with 3 × 3 (orange dashed curve) and 4 × 4 (blue
dash-dotted curve) lattices. The bands depict a deviation of one
standard error of the mean, as computed from the ten realizations.

Fig. 3(a), but the results are averaged over ten independent
disorder realizations. Disorder averages are presented with
deviations of one standard error of the mean. As in Fig. 3(a),
the NLCE curves appear to diverge from each other at a later
time than the ED curves, suggesting better convergence.

FIG. 5. Two-point correlation functions of σ z at various separa-
tions r0i = (xi, yi ) for the system in Fig. 3(a), computed for a single
disorder realization. Solid curves are NLCE of orders 3 [blue: bottom
for (1, 0), top for the rest], 3.5 [orange: top for (1, 0), bottom for
the rest], and 4 (yellow: middle). Dashed curves are ED with 3 × 3
[purple: top for (1, 1) at short times, bottom for the rest] and 4 × 4
[green: bottom for (1, 1) at short times, top for the rest] lattices.
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FIG. 6. Duration of convergence as a function of simulation size
for both NLCE and ED. System size n is defined as in Figs. 3(d)–
3(f). Convergence for an NLCE of size n is defined as the earliest
time at which the estimated 〈σ z

0 (t )〉 deviates from the highest-order
NLCE estimate (order 15 for one dimension and order 4 for two)
by more than 1% (results are qualitatively independent of this 1%
threshold). Convergence for an ED is defined similarly, but relative
to the highest-order ED estimate (15-site chain for one dimension
and 4 × 4 lattice for two). The systems are (a) a 1D XXZ chain
with disorder strength D = 7J⊥ and (b) a 2D XXZ square lat-
tice with disorder strength D = 7J⊥ (solid curve) and D = 25J⊥
(dashed curve).

Figure 5 shows that inhomogeneous NLCE also converges
more rapidly than ED in computing observables such as
correlation functions, which are spatially localized but not
confined to a single site. The system is the same as in Fig. 3(a).
Correlations C0i(t ) = 〈σ z

0σ z
i 〉 − 〈σ z

0 〉〈σ z
i 〉 between site 0 and

site i are computed for various separation vectors r0i between
site 0 and site i. For all separations, NLCE is converged for
longer times than ED at the same order and, at least for
separations of (1, 0) and (2, 0), even the order 3 NLCE seems
to outperform the 4 × 4 ED. It is interesting to note that
the (1, 1) correlation is lower in magnitude than the (2, 0)
correlation, despite the separation distance being smaller. This
phenomenon appears only for a checkerboard initial state
(not a uniform one) and can be explained by cancelations in
perturbation theory that occur for the (1, 1) correlation but not
for the (2, 0) correlation.

The improved accuracy of NLCE over ED is greater for
systems with more localized correlations, as in many-body
localized systems. Figure 6 shows the approximate duration
of time for which NLCEs and EDs in one and two dimensions
are well converged. Figure 6(a) shows that in one dimension,
the duration of convergence of NLCE increases rapidly above
n ∼ 10, whereas ED shows a much slower convergence. A
tentative interpretation of these results is that the convergence
time grows rapidly with order once the clusters are large
enough to capture the correlation length. The results are then
consistent with the idea that NLCE can capture longer-ranged
correlations than ED. Figure 6(b) shows that NLCE converges
more slowly in two dimensions than in one, although it still
converges rapidly relative to ED. We interpret this to mean
that the 2D systems have localization lengths longer than we
could capture in our simulations or are not localized; this is
consistent with the current understanding of many-body lo-
calization in dimensions above one. However, we do note that

at higher disorder strength, NLCE appears to give a greater
relative improvement in convergence over ED, as evidenced
by the greater separation between the D = 25 curves than the
D = 7 curves. This is consistent with higher disorder strength
leading to a more localized system.

IV. CONCLUSION

We have developed a generalized NLCE for simulating
quantum systems without translational symmetry, includ-
ing disordered systems and out-of-equilibrium systems with
nonuniform initial conditions. We find that for dynamics
computations with both Hamiltonian disorder and nonuniform
initial conditions, our inhomogeneous NLCE provides more
accurate results than an ED of comparable computational
cost. This improvement can be seen for measurements in
single disorder realizations, for disorder-averaged measure-
ments, for measurements of single-site observables, and for
measurements of multisite observables such as two-point
correlation functions. In our examples, increasing disorder
strength increases the accuracy of NLCE relative to ED, which
is consistent with the crucial role of the correlation length in
determining the convergence of these numerical methods.

In contrast to previous NLCE methods for disorder, one
does not have to do a full (or nearly full) average over
disorder configurations in order to obtain meaningful results.
Whereas m-valued on-site disorder required summing O(mN )
(for the maximal number of sites N) disorder configurations to
apply previous NLCE methods, ours requires a single disorder
configuration (or a finite number to do disorder averaging
with a finite statistical error) with an O(N ) overhead. This
method becomes especially useful for continuous disorder.
Furthermore, cases that could not be treated with existing
NLCE methods, for example, the relaxation of an initially
inhomogeneous configuration such as a domain wall, are
possible with our method.

We have also demonstrated the rectangle expansion NLCE
in dynamics calculations. Our calculations show that the
rectangle expansion gives intermediate accuracy for a given
expansion order or computational cost: worse than the site
expansion, but better than ED.

While the timescales reached in most of our benchmark
simulations are quite short, NLCE still has the potential to lead
to useful insights. First, converging only to short times is not a
difficulty unique to NLCE; ED often diverges at even shorter
times, but is nonetheless a widely used technique. Second,
even at short times there are hard-to-calculate phenomena that
are physically useful. For example, Ref. [40] measured the
strength of the van der Waals interaction between Rydberg
atoms using NLCE calculations of spin correlations. Third, in
strongly disordered systems, NLCE can remain accurate for
much longer timescales than in clean systems. Exact diagonal-
ization has been a very fruitful method for such systems and
NLCE outperforms it. Finally, we emphasize that our method
is not limited to dynamics calculations. In equilibrium, the
analog of the restriction to short times is a restriction to
high temperatures. However, despite this restriction, NLCE is
the method of choice for strongly interacting Fermi-Hubbard
systems in the typical finite-temperature regime studied
in ultracold-atom experiments and we expect the methods
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presented here to extend this to disordered Fermi-Hubbard
systems.

The ideas presented here could potentially be used in
tandem with other algorithms to improve their efficiency
and accuracy. First, resummation, which involves cleverly
combining NLCE results across multiple orders to achieve a
more accurate resummed result, has played a large role in the
success of traditional NLCEs for computing low-temperature
equilibrium properties [26,53]. We have only presented so-
called bare sum NLCE results that involve no resummation,
and we speculate that an appropriate resummation scheme
could greatly accelerate the order-by-order convergence of
the inhomogeneous NLCE. However, preliminary results sug-
gest that different resummation techniques are needed for
dynamics than the popular Wynn and Euler resummations
used in equilibrium. Second, nothing in the NLCE protocol
explicitly requires the use of ED to compute property values
P(c). For example, combining NLCE with tensor network
or quantum Monte Carlo methods for computing P(c) could
facilitate computing NLCEs of much higher order. This hybrid
approach has already been applied in the homogeneous case
with solvers like the density-matrix renormalization group
[29,72,73] and dynamical quantum typicality [74], and similar
approaches are likely possible in the inhomogeneous case.
In this sense, NLCE could be used as a general purpose

convergence accelerator for any simulation algorithm applica-
ble to arbitrary finite-size clusters. This is especially true for
the rectangle expansion; the site expansion involves summing
a tremendous number of clusters at high orders and is thus
numerically unstable, but the rectangle expansion avoids this
issue and is more robust to small errors from approximate
solvers.

Note added. Recently, Ref. [75] presented NLCE calcu-
lations for dynamics with a rectangle expansion. Although
Ref. [75] shares this feature with the present paper, it has a
different focus. Our work focuses on inhomogeneity; while
it uses a rectangle expansion, it relies on a basic cluster
solver and does not study the expansion’s particular features
in depth. Reference [75] focuses more on the rectangle ex-
pansion, combines it with a more advanced cluster solver,
and presents extensive comparisons to other state-of-the-art
numerical methods.
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