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The realization of antiferromagnetic (AF) correlations in ultracold fermionic atoms on an optical lattice is a
significant achievement. Experiments have been carried out in one, two, and three dimensions, and have also
studied anisotropic configurations with stronger tunneling in some lattice directions. Such anisotropy is relevant
to the physics of cuprate superconductors and other strongly correlated materials. Moreover, this anisotropy
might be harnessed to enhance AF order. Here we numerically investigate, using the determinant quantum Monte
Carlo method, a simple realization of anisotropy in the three-dimensional (3D) Hubbard model in which the
tunneling between planes, t⊥, is unequal to the intraplane tunneling t . This model interpolates between the
three-dimensional isotropic (t⊥ = t) and two-dimensional (2D; t⊥ = 0) systems. We show that at fixed interaction
strength to tunneling ratio (U/t), anisotropy can enhance the magnetic structure factor relative to both 2D and 3D
results. However, this enhancement occurs at interaction strengths below those for which the Néel temperature
TNéel is largest, in such a way that the structure factor cannot be made to exceed its value in isotropic 3D systems
at the optimal U/t . We characterize the 2D-3D crossover in terms of the magnetic structure factor, real space
spin correlations, number of doubly occupied sites, and thermodynamic observables. An interesting implication
of our results stems from the entropy’s dependence on anisotropy. As the system evolves from 3D to 2D, the
entropy at a fixed temperature increases. Correspondingly, at fixed entropy, the temperature will decrease going
from 3D to 2D. This suggests a cooling protocol in which the dimensionality is adiabatically changed from 3D
to 2D.
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I. INTRODUCTION

Quantum simulation uses engineered quantum systems,
such as ultracold atoms in lattices, to realize many-body mod-
els of interest in ways that offer powerful control over the
system and probes of its physics [1–3]. A prototypical exam-
ple is using fermions in an optical lattice as an optical lattice
emulator (OLE) to realize the Fermi-Hubbard model [4–11].
Such simulations allow experiments to flexibly tune the ki-
netic and interaction energies, lattice geometry, and lattice
filling, and in principle use this control to study antiferromag-
netism (AF), superconductivity, pseudogap, and strange metal
behavior, for example.

AF is intriguing in its own right and is a natural first step
to more exotic phases [12–14]. AF in cold atoms has been
studied in bosonic atoms [15], spin-1/2 ions [16,17], in highly
anisotropic lattices [18–21], and in other more recent theoret-
ical work [22–27]. In a fermion OLE, spin-selective Bragg
scattering observed AF correlations at temperatures down to
1.4 TNéel in a three-dimensional (3D) cubic lattice [8], where
TNéel is the Néel temperature (the critical temperature for AF
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ordering), with an accompanying characterization of the Mott
insulator equations of state [28]. In addition, quantum gas
microscopy [29–36] has provided direct observation of corre-
lations beyond nearest neighbors, through real-space imaging
of AF order in one [37] and two [38–40] dimensions. As we
will elaborate on later, dimensionality plays an important role
in the transition temperature to the antiferromagnetic phase,
being equal to zero in two dimensions (2D) but finite in three
dimensions (3D).

Although OLEs are giving us new insights into quantum
matter, there are also significant challenges. Of particular
relevance here is that, although experiments have achieved
spin correlations which extend across the finite 2D lat-
tice [40], so far experiments have not reached sufficiently
low temperatures or entropies to observe a long-range or-
dered AF phase in a regime where TNéel > 0, i.e., where
correlations would persist to long range as the system size
is increased arbitrarily. In order to achieve this goal, sev-
eral cooling protocols exist. One that has received a lot of
attention from both theory and experiment is to use spatial
subregions as repositories for excess entropy, allowing for
lower temperatures in other regions [18,40–43], but reach-
ing the Néel temperature, and below, remains an outstanding
challenge.
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FIG. 1. Setup: Fermionic atoms trapped in a three-dimensional
anisotropic lattice. Each atom can either be in |↑〉 state (green) or
|↓〉 state (red) realized using hyperfine states of ultracold atoms. An
atom hops to its neighboring site at rate t within a plane and at rate t⊥
between the planes. Two atoms with opposite spin states can occupy
the same site with energy U . The crossover from a three-dimensional
lattice to a two-dimensional lattice is achieved by reducing t⊥.

Anisotropic systems that have larger tunneling rates in
some directions than others offer potentially richer varieties
of physics than simple one-dimensional (1D), 2D, or 3D cubic
lattices. Anisotropic systems are relevant to real materials, as
discussed below, while also suggesting a route to achieving
longer range AF order. Specifically, it is known that 2D sys-
tems offer stronger nearest-neighbor correlations for a given
entropy than 3D systems [18,20], making them favorable to
search for short-ranged AF. However, true long-range order
cannot develop at T > 0 in 2D due to the Mermin-Wagner
theorem, in contrast to 3D. Thus, a potential scenario for
anisotropic lattices that interpolate between 2D and 3D is
that they retain the strong AF correlations associated with 2D
planes, while being able to develop long-range order by virtue
of the interplane tunnelings.

This paper explores the evolution of AF correlations
in the half-filled repulsive Hubbard model across the 2D-
3D crossover using the determinant quantum Monte Carlo
(DQMC) method [44,45]. DQMC [8,13,27,28,39,40,46–49]
and other numerical solutions of the Hubbard model (such
as numerical linked-cluster expansion (NLCE) [28,39,47],
dynamic mean-field theory (DMFT) [48,50–52], density ma-
trix renormalization group (DMRG) [53], and diagrammatic
QMC [54,55]) have provided key input in the interpretation
of experiments and, in particular, in the determination of
temperature. In this paper, the evolution of AF correlations is
characterized as a function of both temperature T and entropy
S, to allow for a deeper understanding of the optimization of
AF at fixed S.

An important conclusion is that, for interaction strength
U less than (roughly) the 2D bandwidth, the long-range AF
correlations at a given temperature or entropy, measured by
the magnetic structure factor at the �k = (π, π, π ) wave vec-
tor, are maximized in lattices which straddle dimensionality.
Although anisotropy can increase the structure factor at small
U , it never exceeds the value in the isotropic 3D system
evaluated at the optimal U . Similar conclusions were reached

in Ref. [19] for the 1D-3D crossover using a dynamical cluster
approximation (DCA).

In addition to the possibility of achieving AF in OLE, an
understanding of dimensional crossover is relevant to strongly
correlated materials [56]. Perhaps the most important example
is the cuprate superconductors, layered materials for which
the superexchange coupling J⊥ = 4t2

⊥/U between planes is
several orders of magnitude lower than the in-plane superex-
change J = 4t2/U [57,58]. Despite this large anisotropy, J⊥
is crucial to the physics, since in a purely 2D geometry
TNéel = 0.

The remainder of this paper is organized as follows: Sec-
tion II presents the Hubbard Hamiltonian and defines the
observables we consider. Section III presents the main results.
Section IV concludes.

II. THE HUBBARD HAMILTONIAN AND DQMC

We investigate the half-filled, anisotropic Hubbard Hamil-
tonian (depicted in Fig. 1),

H = −t
∑

〈i j〉‖,σ
(c†

iσ c jσ + H.c.) − t⊥
∑

〈i j〉⊥,σ

(c†
iσ c jσ + H.c.)

+U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
, (1)

in which hopping t connects pairs of sites 〈i j〉‖ which are
neighbors in the same plane of a 3D cubic lattice, while a
weaker hopping t⊥ < t connects pairs of sites 〈i j〉⊥ which
are neighbors in adjacent planes. U is the on-site repul-
sion between fermions of opposite spin. The limits t⊥ = t
and t⊥ = 0 correspond to the 3D and 2D Hubbard Hamil-
tonians respectively. The chemical potential is set to μ = 0.
This choice of μ in Eq. (1) gives half-filling on average,
i.e., 〈ni〉 = 〈ni↑〉 + 〈ni↓〉 = 1 for all values of t, t⊥, U , and
temperature T . At half-filling, DQMC is free of the sign
problem, and as consequence, low-temperature physics can be
accessed. We set kB = 1 throughout.

We are interested both in the thermodynamics, e.g., en-
ergy and entropy, how the temperature T changes with t⊥ at
fixed entropy S, and also with the behavior of the real space
spin-spin correlation function c(�r ) = c(ρ, z) (where ρ is the
magnitude of the in-plane components of �r), in particular the
in-plane c||(ρ) and out-of-plane c⊥(z) correlation functions,
as well as the magnetic structure factor S(�q ):

c(�r ) = 〈(n�r0+�r,↑ − n�r0+�r,↓) (n�r0,↑ − n�r0,↓)〉,
c||(ρ) = c(ρ, z = 0), c⊥(z) = c(ρ = 0, z),

S(�q ) =
∑

�r
ei �q·�r c(�r ), (2)

where these averages are taken in thermal equilibrium at
fixed temperature T and chemical potential μ = 0. The struc-
ture factors can diagnose long-range order. At half-filling,
the Fermi surface is nested for any t⊥, so that the ordering
wave vector is always (π, π, π ) regardless of the degree of
anisotropy. For that reason, we focus on the AF structure
factor S(�q = (π, π, π )), which we denote Sπ . In addition,
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Ref. [59] contains a mean-field theory study of the crossover
from 3D to 2D considered here, including careful treatment
of finite-size and shell effects to ensure the correct ordering
wave vector is captured at all densities.

The averages of thermal equilibrium observables of Eq. (1)
are evaluated with DQMC [60] in 10 × 10 (for t⊥ = 0) and
6 × 6 × 6 (for t⊥ > 0) lattices. In this method, the introduc-
tion of a space- and imaginary time-dependent auxiliary field
allows tracing over the fermion degrees of freedom analyt-
ically. The auxiliary field is then sampled stochastically. To
achieve accurate results, we obtain DQMC data for 20–50
different random seeds for T/t � 1 and for 1–10 different
random seeds for T/t > 1. In each realization, 500 sweeps
updating the auxiliary field at every lattice site and imagi-
nary time are performed for equilibration and 5000 sweeps
for measurements. For each Monte Carlo trajectory, mea-
surements of the 〈SzSz〉 and 〈SxSx〉 correlation functions are
made. These are equal on average by the SU(2) symmetry,
and both are included in the statistics. The inverse temperature
interval (0, β ) is discretized in steps of �τ with a Trotter step
�τ = 0.05/t for U/t = 4, 8 and �τ = 0.04/t for U/t = 12.
The number of global moves per sweep, which update all
the imaginary time slices at a given lattice site, to mitigate
possible ergodicity issues [61], is set to 2 for U/t = 4, 8 and
to 4 for U/t = 12.

Estimates of other systematic errors—Trotter and finite-
size error—show that the predominant error is statistical,
arising from the finite number of measurements. In the fol-
lowing section, error bars are reported as the standard error
of the mean for all results. For U/t = 12, where the inverse
temperature discretization error is expected to be worst, we
can gain insight into the magnitude of this error by con-
sidering the difference of the results obtained with Trotter
steps �τ = 0.04/t and �τ = 0.05/t . This difference is be-
low 2.5% for all observables of interest, comparable to the
statistical error in many cases. This discretization error is
even smaller for the other two values of U/t considered.
Finite-size errors for thermodynamic quantities and nearest-
neighbor correlations are estimated by taking the difference
between results obtained in cubic lattices with sides of length
L = 4 and L = 6 in 3D. These differences are � 5%. At high
temperatures and away from the optimal anisotropies, i.e.,
well above the Néel temperature, the error in the structure
factor is similar, but for T � TNéel, the structure factor is
sensitive to longer ranged correlations, including those be-
tween sites separated by distances comparable to L. Here,
finite-size effects can be more significant, ∼50% in our cal-
culations. (Indeed, below TNéel, the difference in Sπ in a
finite and infinite system is infinitely large, and a different
extrapolation scheme would be necessary to infer the L = ∞
results.) Results for the structure factor at low temperatures
where it has become independent of temperature should there-
fore be interpreted with some care. However, we expect
the conclusions of our paper to remain. A detailed study
of finite-size effects in the structure factor can be found in
Refs. [55,62], where careful finite-size scaling techniques are
used to extract the Néel temperature in 3D. For more discus-
sion of the finite-size effects in the 2D-3D crossover, see the
Appendix.

III. RESULTS

This section shows the main results of this paper. We
calculate several observables as functions of T/t , U/t , and
t⊥/t : the spatial correlation functions c||(ρ) and c⊥(z), the AF
structure factor Sπ , the double occupancy D = 〈ni,↑ni,↓〉, the
contributions to the specific heat C(T ) from the interaction
and kinetic energies, and the entropy per site S/N , where N
denotes the number of sites. All of these observables contain
important information about the physics and can be measured
in experiments with ultracold atoms. The double occupancy is
a key measure of the Mottness and insulating nature of the sys-
tem, and the correlations and structure factor give information
about the magnetic phase diagram. The thermodynamic ob-
servables give information about the ordering of the state—its
spatial coherence (kinetic energy) and to what extent degrees
of freedom are capable of fluctuating (the entropy and specific
heat). The entropy is usually obtained by ramping from a
weakly interacting gas near adiabatically, and the entropy of
the weakly interacting gas can be determined by thermom-
etry. As the temperature is often not directly experimentally
accessible in strongly interacting systems, understanding the
dependence of observables on S is crucial.

Figure 2 shows the out-of-plane and in-plane spatial cor-
relations for different values of U/t , T/t , and t⊥/t . First,
let us focus on the first row of Figs. 2(a) and 2(b), which
corresponds to U/t = 4. The spatial correlations are larger at
small T/t , showing clear in- and out-of-plane AF oscillations
as a function of distance. At the lowest T/t considered in
Fig. 2, T/t = 0.167, both c||(ρ) and c⊥(z) indicate a strong
antiferromagnetic ordering extending to several lattice sites.
The insets, which present the correlations on a log scale,
demonstrate that for the two high-temperature sets both c||(ρ)
and c⊥(z) have an exponential decay associated with a correla-
tion length ξ , while the low-temperature data reach a constant
value, an indicator of larger correlation length ξ and the onset
of long-range order. As one might expect, the strength of the
correlations increases as the correlation length increases. All
of these trends are similar for the U/t = 8 and U/t = 12 data,
but both spatial correlations exhibit stronger AF correlations
than for U/t = 4.

Now let us focus on how the the low-temperature data
for Figs. 2(a) and 2(b) evolve with t⊥/t . As t⊥/t increases,
the between-plane correlations get stronger while the in-plane
correlations get slightly weaker. The effect on in-plane cor-
relations is strongest for U/t = 4 and nearly negligible for
U/t = 8, 12.

In Fig. 3, we plot the in-plane and out-of-plane nearest-
neighbor spatial correlations, cNN

|| and cNN
⊥ , as functions of

temperature T/t at various t⊥/t . Both correlation functions
get enhanced at small T/t and large U/t . Similar to the trends
of longer ranged correlations shown in Fig. 2, we see that at
large U/t , the in-plane correlations weakly depend on t⊥, but
diminish as t⊥ is increased at weak couplings, while the out-
of-plane correlations strongly depend on the anisotropy for
all interaction strengths. As expected, cNN

⊥ → 0 when t⊥ → 0,
indicating that the 2D planes are decoupled.

Figure 4 presents the structure factor Sπ versus t⊥/t at var-
ious temperatures. The U/t = 4 data clearly show that at each
temperature, Sπ is largest between 2D and 3D. In contrast, for
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FIG. 2. (a) Out-of-plane c⊥(z) and (b) in-plane c||(ρ ) spin correlations as a function of separation for different values of U/t and t⊥/t .
Insets show the same plot with the correlations on a log scale.

U/t = 8 and 12, the largest Sπ occurs at the isotropic point
t⊥ = t . Although the U/t = 8 data are consistent with Sπ

being maximized at t⊥/t = 1, it is rather independent of t⊥/t

FIG. 3. Nearest-neighbor spin correlations as a function of tem-
perature: cNN

⊥ = c⊥(z = 1) and cNN
|| = c|| (ρ = 1).

for t⊥/t ∈ (0.5, 1.0) at the lowest temperatures considered,
T/t � 0.167. Moreover, the maximal Sπ at U/t = 4 is smaller
than the isotropic Sπ for U/t = 8; if one’s goal is simply to
maximize Sπ —irrespective of U/t—there is no advantage to
using anisotropy.

The behavior of Sπ as a function of t⊥/t at different interac-
tion strengths, as displayed in Fig. 4, has a simple explanation.
In a 3D cubic lattice, Sπ is maximized around U/t ≈ 10 [63].
One effect of anisotropy is to change the average tunneling
to be somewhere between t and the smaller t⊥, and thus one
would expect anisotropy to decrease the effective tunneling,
teff, and increase the effective U/teff compared to U/t . This
change qualitatively explains why Sπ is maximized around
t⊥/t ≈ 0.4 for U/t = 4, while is maximized near the isotropic
point at U/t = 8, 12.

Figure 5 shows the AF structure factor Sπ versus temper-
ature T/t at different t⊥/t . Structure factors at all values of
t⊥/t and U/t grow as temperature is lowered. Generally, the
onset of growth of the structure factor begins at the largest
temperature for U/t = 8, although this U/t at which growth
onsets can depend on anisotropy. For example, for small t⊥/t ,
U/t = 4 has a similar temperature for the onset of correla-
tions.

Figure 6 plots the double occupancy D = 〈ni,↑ni,↓〉 as a
function of temperature and displays three essential parts.
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FIG. 4. AF structure factor Sπ as a function of interplane hop-
ping t⊥/t for different temperatures T/t at U/t = 4 (top panel),
U/t = 8 (middle panel), and U/t = 12 (bottom panel). At weak
coupling, the structure factor increases with anisotropy, i.e., as t⊥/t
decreases from 1.

Imagine starting at high temperature and cooling the system
down. As the temperature is lowered, first the double occu-
pancy D goes down. Then, as the temperature is lowered
further, it increases (in every case except the 2D U/t = 4).
Finally, as the temperature is lowered even further, D sat-
urates, or in some cases, such as U/t = 4, it begins to
decrease.

The first feature, the high-temperature decrease of D upon
cooling, is straightforward to understand. At temperatures
T � U , eigenstates with significant numbers of double oc-
cupancies will be created, while at temperatures below this,
the eigenstates relevant to the μ = 0 state will have only a
small admixture of doublons, at least for reasonably strong
interactions.

The second feature is more interesting and arises from
spin ordering. We can gain a simple understanding of this
starting from the U � t limit. For temperatures T � U , we
can think of the states as essentially having a single particle
per site with small admixtures of other states. The relevant
states in the relevant sector are just determined by their spin
configurations. AFM aligned spin configurations will have
energy ∝ −t2/U per site lower energy than FM aligned spins.
Therefore, as the temperature is lowered below T � −t2/U ,
the AFM aligned states become favored. Now consider the
doublon content of these two classes of states. The number

FIG. 5. AF structure factor Sπ as a function of temperature T/t
for different interplane hopping t⊥/t . For U/t = 4 at low T/t , as
anisotropy is introduced, Sπ grows by almost a factor of 2 down
to t⊥/t = 0.25. For very strong anisotropy, t⊥/t = 0.125, Sπ comes
down and approaches the 2D limit. For U/t = 8, 12, Sπ decreases
with anisotropy. This decrease will overwhelm the benefits of adia-
batic cooling (described later; see, e.g., Fig. 10).

of doublons in the state with FM aligned spins is small (zero
if all the spins are exactly aligned) since Pauli exclusion pre-
vents tunneling. In contrast, there is an admixture ∝ (t/U )2

of doublons in the AFM state; it is precisely this admixture
which allows some delocalization of particles that lowers the
energy of the AFM states relative to the FM ones. Therefore,
as the temperature is lowered, the AFM states are increasingly
favored and the number of doublons increases by an amount
∝ (t/U )2. (This is why, in general at low temperature, the
increase in D is accompanied by a lowering of the kinetic
energy.) We note that a simple place to check this argument
is in a two-site system, where the calculation can be done
analytically.

These arguments provide an understanding of the decrease
in D as T is lowered below U and its small increase (in almost
all cases) when T � t2/U . This also explains some of the de-
pendences on parameters. For example, the low-temperature
value of D decreases as U/t increases, and it increases as t⊥
increases. However, some features remain unexplained: Why
does D at U/t = 4 decrease again with decreasing temper-
ature at sufficiently low temperatures? And why is there no
(visible) increase in D with decreasing temperature for the one
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FIG. 6. Double occupancy as a function of temperature for
U/t = 4, 8, 12 at different values of t⊥/t .

set of parameter values (U/t = 4 for t⊥ = 0)? A simple theory
capturing these more refined features and dependences could
provide powerful insights into the Hubbard model’s physics,
and our data will be an excellent test for any candidate theo-
ries.

The specific heat as a function of temperature is a useful
thermodynamic observable, showing peaks that characterize
the entropy reduction as degrees of freedom reorganize and
cease to fluctuate. In particular, there is a two-peak structure,
shown in Fig. 7, where at large U/t one peak is associated with
the charge (i.e., density) and the other with the spin degree of
freedom. It is even more informative to break its contributions
into the interaction energy (P = UD) and kinetic energy (K)
contributions.

Reference [64] examined the contributions dP/dT and
dK/dT to the specific heat in the 2D Hubbard model. One
reason this is useful is that the interaction energy directly
captures the charge fluctuations of freedom, while the kinetic
energy is closely related to the spin degree of freedom (at
least at large U/t). For U/t = 10, the high-T charge peak
originated in dP/dT (moment formation) and the low-T spin
peak in dK/dT was related to moment ordering. However,
although the two-peak structure in C was clearly evident at
U/t = 2, the high-T peak came from dK/dT and the low-T
peak from dP/dT . (The designation of these peaks as charge
and spin thus clearly becomes inappropriate as U gets small.)
At U/t = 10, in addition to the high-T peak, dP/dT also

FIG. 7. The specific heat C for U/t = 4, 8, 12 at different values
of t⊥/t . For U/t = 8, 12 the low-temperature peak associated with
spin degrees of freedom is reduced by anisotropy, while U/t = 4
shows the opposite effect.

had a negative dip at lower T . This has also been observed
in the 1D Hubbard model [65] and dynamical mean field
studies [66].

We show a similar decomposition of the specific heat into
dP/dT and dK/dT in Figs. 8 and 9 [67]. Figure 8 shows the
interaction energy contribution to the specific heat, dP/dT .
The U/t = 8 and the U/t = 12 data have a high-temperature
charge peak and a negative dip at lower T/t , associated with
the increase in interaction energy which occurs with the for-
mation of AF order. For U/t = 8, the negative dip increases
by more than a factor of 2 moving away from 3D, while for
U/t = 12 the magnitude of the dip decreases moving away
from 3D, and the dip shifts to lower T/t as the system be-
comes more 2D. Although U/t is constant, U/t⊥ increases as
t⊥ decreases; the more pronounced dip can thus be explained
by an increase in the effective interaction strength. Finally,
for U/t = 4 the low-temperature peak in dP/dT leads to the
low-temperature peak in the specific heat.

The low-temperature spin peak in dK/dT can be seen in
Fig. 9 for U/t = 8 and U/t = 12. It is mostly independent
of t⊥/t although the peak position moves down in T/t as the
system becomes more 2D. For U/t = 4, the peak is replaced
by a broader bump that moves to higher T/t as t⊥/t decreases.

Together, dK/dT and dP/dT combine to form the charac-
teristic two peak structure of the specific heat seen in Fig. 7.
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FIG. 8. dP/dT with P the interaction energy as a function of
temperature for U/t = 4, 8, 12 at different values of t⊥/t .

For strong couplings U/t = 8, 12 the low-T peak in the spe-
cific heat comes from the kinetic energy peak, and the role
of the interaction energy is to reduce the height of the peak.
For U/t = 4, we can see that both dP/dT and dK/dT give a
positive contribution to the low-T peak in the specific heat.

The interpretation of the multipeak structure of the spe-
cific heat data is complicated by the possibility that the
spin-ordering peak might itself be split owing to the pres-
ence of two distinct superexchange energy scales, J and J⊥.
For J⊥ < J stochastic series expansion (SSE), studies of the
2D-3D crossover of the spin-1/2 Heisenberg model [68] have
shown the existence of a broad peak from short-range 2D
order, as well as a sharper 3D ordering peak whose height
diminishes as J⊥/J decreases. Resolving these structures is
already challenging for the spin model, even though the SSE
approach scales linearly with the number of spins N and
system sizes as large as N = 3 × 104 were investigated, and is
not possible for the more challenging itinerant Hubbard model
studied here.

The entropy as a function of temperature has, in principle,
similar information to the specific heat, but the physics is less
directly apparent, as seen in Fig. 10. We compute the entropy
by integrating dS = dQ/T = C/T dT , with C = dE/dT the
specific heat. Integrating by parts, that integral can be rewrit-
ten in terms of the energy E ,

S(T ) = 2 ln(2) + E (T )

T
−

∫ ∞

T

E (T ′)
T ′2 dT ′. (3)

FIG. 9. dK/dT with K the kinetic energy as a function of tem-
perature for U/t = 4, 8, 12 at different values of t⊥/t .

In practice, we obtain DQMC results up to a temperature
cutoff Tcut = 250t and use the leading-order high-temperature
series term (t = 0) in the integral in Eq. (3) for T > Tcut to
accelerate convergence [69].

Figure 10 shows the entropy per site S/N versus T/t
for different t⊥/t at U/t = 4, 8, 12. Systems with small t⊥/t
have larger S for a given T/t . For U/t = 4, S(T ) for dif-
ferent values of t⊥/t begins to become distinct at T/t � 5,
and then again become independent of t⊥ at T/t � 0.1. For
U/t = 8, 12, the dependence on t⊥/t is negligible until
T/t � 0.5. Decreasing t⊥/t at fixed entropy lowers the tem-
perature.

We define the temperature for the low-T peak in C(T ) as
T ∗. For t⊥/t = 1 and U/t = 8, T ∗ closely coincides with the
Néel temperature, while for U/t = 4, T ∗ is nearly in agree-
ment with the upper bound given by Ref. [55]. For U/t = 12,
we do not know of literature where finite-size scaling is done
to extract TNéel. For the 2D system, TNéel = 0 due to the
Mermin-Wagner theorem, but in contrast T ∗ �= 0. It is also
useful to define S∗ = S(T ∗). Figure 11 shows T ∗ and S∗ as
functions of t⊥/t . For U/t = 8 and U/t = 12, T ∗ increases
with t⊥/t , signaling that the formation of strong AF correla-
tions moves to lower T as t⊥/t is decreased. For U/t = 4, on
the other hand, T ∗ is almost independent of t⊥/t .

In the strong-coupling (Heisenberg) limit of the 2D-3D
crossover, TNéel/J is known [57] to go as TNéel ∼ −1/ln α

for α � 1, with α = J⊥/J . The isotropic case, α = 1, has
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FIG. 10. Entropy S vs temperature for different interplane hop-
ping t⊥. Adiabatic cooling is observed as t⊥ is decreased for all values
of the interaction strength.

the highest transition temperature TNéel/J ≈ 0.946 [70]. TNéel

decreases slowly with α over most of the range from 0 to 1,
and then rapidly drops to zero as α → 0. Similar trends are
observed for T ∗ in Fig. 11 for large U/t , where the results
indicate that although T ∗ is on the same order as the 3D value
at weak t⊥/t , it still reaches is largest value at the isotropic
point t⊥ = t . On the other hand, this strong coupling behavior
does not extend to weaker coupling, as the U/t = 4 data
demonstrate in Fig. 11, where T ∗ is nearly independent on
anisotropy. A possible explanation for this behavior is that
for small U/t band structure effects such as the van Hove
singularity in the 2D density of states become relevant.

Previous work [71] examined short-range magnetic or-
der in different dimensions and concluded that for strong
couplings their onset occurs at a common (dimension in-
dependent) entropy, roughly S/N ∼ ln 2. This result is in

FIG. 11. Top panel: T ∗, defined as the position of the small-
temperature peak in C; lower panel S∗ = S(T ∗) as a function of t⊥/t .
Lines in the upper panel are linear fits to the data, while lines in the
lower panel are the average of the data sets.

agreement with Fig. 12 for U/t = 8, 12, where the onset of
growth of the structure factor begins around S/N ∼ ln 2. That
trend, however, does not extend to smaller U/t , as the U/t = 4
panel in Fig. 12 shows.

The reduction in Sπ with anisotropy at U/t = 8, 12 over-
whelms the benefits of adiabatic cooling, as seen in Fig. 12.
At fixed entropy, Sπ is reduced by anisotropy. In contrast,
at U/t = 4, Fig. 12, Sπ can be enhanced by more than a
factor of 2 by reducing t⊥/t away from the 3D limit. As
discussed previously, however, the value is never as large as
the maximum attained for U/t = 8 in the isotropic case at the
same entropy.

IV. CONCLUSIONS

We have evaluated the entropy dependence of the AF struc-
ture factor Sπ of the half-filled repulsive Hubbard model in
the 2D-3D crossover, tuned by an interplanar tunneling t⊥
which is less than the intraplane t . At interaction U/t = 4
and T/t � 0.2, Sπ is maximized at intermediate t⊥/t ≈ 0.4.
At stronger coupling, U/t = 12, Sπ is largest at the isotropic
3D point, t⊥/t = 1; while for U/t = 8, Sπ exhibits a plateau
between 0.5 � t⊥/t � 1.

Although anisotropy enhances magnetism at U/t = 4, the
structure factor is smaller than it is for larger U/t at the
isotropic point t⊥ = t . Furthermore, despite some adiabatic
cooling when reducing t⊥ for large U/t , Sπ remains roughly
the same for t⊥/t ∈ (0.5, 1.0) for U/t = 8, and diminishes
with anisotropy for U/t = 12, so there is no benefit in using
anisotropy.

The study of anisotropy in the tunneling of the Hubbard
model, and its strong-coupling Heisenberg limit, is of inter-
est beyond OLE. QMC simulations of bilayer Hubbard [72]
and Heisenberg [73] models in which t⊥ �= t or J⊥ �= J have
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FIG. 12. AF structure factor Sπ as a function of entropy S for
different interplane hopping t⊥/t . At weak coupling, Sπ grows as
one moves adiabatically away from the isotropic 3D limit down to
t⊥/t = 0.375 and then comes back down.

explored quantum phase transitions between AF and sin-
glet phases relevant to heavy fermion magnetism, as well
as studied s±-wave superconductivity [74–76]. Similarly, the
possibility of enhanced transition temperatures to magnetic
order at the 2D surface of bulk 3D materials has been investi-
gated [77,78]. Finally, analogous issues concerning the effect
of inhomogeneous intersite tunneling occur in the context of
optimizing d-wave pairing in the 2D Hubbard Hamiltonian.
In that case, a model of 2 × 2 plaquettes [79] with internal
hopping t and coupled by interplaquette hopping t ′ was sug-
gested to have an optimal tunneling for pairing which occurs
at t ′ < t , away from the isotropic limit [80–86]. The interest in
anisotropic tunnelings also extends to the attractive Hubbard
model as well. For example, in Ref. [87], a layer of discon-
nected attractive Hubbard sites coupled to a metallic layer
shows that although the superconducting critical temperature
Tc exhibits a maximum as function of the interlayer tunneling,
the highest Tc is still smaller than the maximal Tc of the
uniform 2D attractive Hubbard model. The results presented
in the present paper provide additional information in this
broader context, both by quantifying how AF evolves for
layered materials, and also by providing further insight into
how the strong correlation physics interplays with anisotropy.

Finally, a possible application of our results is to design
a cooling protocol, relying on the results of Fig. 10 that

show a system at a fixed entropy will get colder as t⊥/t
is reduced, specially for strong interactions. By exploiting
inhomogeneity, this effect can be used to cool systems with
an arbitrary t⊥/t , even isotropic 3D systems, as follows. First,
load the atoms into a 3D lattice. Now adjust the lattice depth
of the system in a carefully constructed inhomogeneous way;
for simplicity, think of two regions: R, an entropy reservoir
we will sacrifice to cool the system, and S, the system we
want to cool and study. In R, we adiabatically lower the z
direction lattice depth Vz. This spatially inhomogeneous lattice
depth could be engineered using, for example, a spatial light
modulator (however, implementing the spatially modulated
anisotropy will be more challenging than a spatially mod-
ulated trapping potential). The now-anisotropic R can carry
extra entropy at a given temperature, as per Fig. 10, so entropy
will transport to this region from S as the system reaches
thermal equilibrium at a new temperature. At the temperatures
plotted for U/t = 12, the entropy per particle in region S can
be reduced by a factor of 2. Finally, one can cool and study S
with an arbitrary t⊥/t this way by applying an optical barrier
to turn transport off between S and R, and then adiabatically
change Vz in the S region to give the desired t⊥/t . This cool-
ing method bears similarities to other entropy redistribution
protocols [40–43,88–97] but overcomes some difficulties. In
particular, schemes that rely on metal reservoirs created by
changing the local potential, rather than lattice anisotropy,
suffer at large U/t from the fact that the metals created this
way are bad metals, and therefore they carry significantly
less entropy, than, e.g., a noninteracting metal. Our protocol
also has some similarities to the conformal cooling suggested
in Ref. [98], but allows one to cool the full Fermi-Hubbard
model in a practical way, rather than just the Heisenberg limit.
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APPENDIX: FINITE-SIZE ERRORS

As mentioned in Sec. II, for the energy, kinetic energy,
interaction energy (number of doublons), nearest-neighbor
spin correlations, and entropy, finite-size errors (as measured
by the difference between L = 4 and L = 6 calculations)
are � 5%. It is the correlations at distances comparable to
the system size that are affected; other than these, Sπ is
thus the only observable that is affected, and only when the

033340-9



EDUARDO IBARRA-GARCÍA-PADILLA et al. PHYSICAL REVIEW A 102, 033340 (2020)

system is near or below the Néel temperature so that the
correlations at separations comparable to the system size are
appreciable.

In order to give an estimate of the finite-size effects
for the different values of t⊥/t and U/t , we present S(L)

π

and S̃(L)
π = S(L)

π /L3 as a function of U/t , t⊥/t , and T/t in
L × L × L cubic systems. We note that for T > TNéel we
have Sπ → constant �= 0 as L → ∞ and S̃π → 0, while for
T < TNéel we have Sπ → ∞ and S̃π → const.

Figure 13 presents Sπ at T/t = 0.2 as a function of t⊥/t
for different system sizes, while Tables I and II report S̃π

for two T/t presented in Fig. 4. The U/t = 8, 12 panels ex-
hibit the same behavior seen in Fig. 4; i.e., Sπ is maximized
when t⊥ ∼ t . For t⊥/t � 0.5, Sπ grows roughly proportional
to L3, suggesting that the system is below TNéel and that the
numerics provides a reasonable estimate of S̃π . In contrast,
the U/t = 4 panel demonstrates that Sπ is maximized at the
2D-3D crossover, in agreement with the results presented in
Fig. 4, although the location of the maximum depends signif-
icantly on the system size. The scaling looks neither like the
simple L-independent Sπ expected in large systems for tem-
perature above the Néel temperature nor the L-independent
S̃π expected for large systems below the Néel temperature.
Previous results in the t⊥/t � 1 limit [99], and in 3D [55],

FIG. 13. AF structure factor Sπ as a function of interplane tun-
neling t⊥/t at T/t = 0.2 for different cubic lattices with sides of
length L. We note that the L = 8 calculations are substantially more
computationally expensive because—defining Nsites = L3 to be the
number of sites—the computational cost scales as O(N3

sites ) = O(L9).

TABLE I. Structure factor S̃(L)
π in cubic lattices with sides of

length L at T/t = 0.125.

U/t t⊥/t S̃(4)
π S̃(6)

π |S̃(6)
π − S̃(4)

π |
0.125 0.06 0.04 0.03
0.25 0.10 0.08 0.02

4 0.375 0.11 0.09 0.02
0.5 0.11 0.08 0.03
0.75 0.11 0.06 0.05
1 0.09 0.05 0.04

0.125 0.09 0.05 0.04
0.25 0.12 0.09 0.03

8
0.5 0.20 0.17 0.03
0.75 0.22 0.18 0.04
1 0.21 0.17 0.04

0.125 0.09 0.05 0.04
0.25 0.11 0.08 0.03

12
0.5 0.20 0.16 0.04
0.75 0.26 0.19 0.06
1 0.25 0.21 0.04

place TNéel � 0.2 for U/t = 4; therefore, this absence of a
simple scaling on L is expected at T/t = 0.2. A detailed study
of finite-size effects, as was done in Refs. [55,62] in 3D, and
for larger system sizes than in the present paper is required to
precisely determine TNéel in the 2D-3D crossover. This task is
out of the scope of the paper, but our results will provide a
useful starting point for such calculations.

TABLE II. Structure factor S̃(L)
π in cubic lattices with sides of

length L at T/t = 0.2.

U/t t⊥/t S̃(4)
π S̃(6)

π S̃(8)
π |S̃(6)

π − S̃(4)
π | |S̃(8)

π − S̃(6)
π |

0.125 0.05 0.02 0.01 0.03 0.01
0.25 0.06 0.03 0.02 0.03 0.01

4 0.375 0.07 0.04 0.02 0.03 0.02
0.5 0.07 0.04 0.02 0.04 0.02
0.75 0.08 0.03 0.02 0.05 0.01
1 0.07 0.02 0.02 0.04 0.00

0.125 0.08 0.04 0.04
0.25 0.09 0.06 0.04

8
0.5 0.17 0.14 0.03
0.75 0.21 0.17 0.05
1 0.21 0.17 0.04

0.125 0.07 0.03 0.04
0.25 0.08 0.03 0.05

12
0.5 0.14 0.09 0.05
0.75 0.21 0.17 0.04
1 0.26 0.19 0.08
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