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A recurring question regarding many-body quantum systems 
is how the competition between the kinetic and interac-
tion energies determines the ground-state quantum phases. 

Quantum fluctuations play an essential role in determining the 
ground-state spin structure, which may differ drastically from the 
mean-field prediction. The SU(2) Hubbard model has long been 
a prototypical system to study these effects, and Hubbard models 
with an enlarged SU(N) symmetry have attracted great interest.

The study of SU(N) quantum magnetism historically originated 
from the mathematical technique of large-N expansions1–4. More 
recently, understanding N > 2 systems has attracted broader interest 
owing to the expectation that such systems will display a wide array 
of exotic physics5–11. Although N can be large, quantum fluctua-
tions remain important since SU(N) symmetry prevents spins from 
becoming classical4,12.

Although theoretical models with SU(N) symmetry have also 
been discussed in connection with real physical systems such as 
transition-metal metal oxides13,14 and graphene’s SU(4) spin-valley 
symmetry15, the introduction of the symmetry is just a rough 
approximation. In contrast, an intrinsic SU(N) nuclear spin symme-
try12,16–18 is realized in fermionic isotopes of alkaline earth metal-like 
atoms (AEAs), providing unique opportunities for quantum simu-
lation experiments of the SU(N) Fermi–Hubbard model (FHM)19–24. 
The SU(N = 2I + 1) FHM can be implemented by loading an AEA 
with a nuclear spin I in an optical lattice. This model is given by  
the Hamiltonian

H = −t
∑

⟨i,j⟩,σ
c†iσcjσ +

U
2
∑

i,σ ̸=τ

nσ(i)nτ(i)− μ
∑

i,σ
nσ(i), (1)

where ciσ (c†iσ) denotes the fermionic annihilation (creation) opera-
tor for site i, nσ(i) = c†iσciσ is the number operator and μ is the 

chemical potential that controls the density. The flavour index σ 
labels the projection quantum number of the nuclear spin mI. Here 
we employ 173Yb, and mI is −5/2, −3/2, …, +5/2. The tunnelling 
amplitude t and the on-site interaction U do not depend on σ, giv-
ing rise to the SU(N) symmetry.

An important characterization of strongly correlated states is pro-
vided by their spin correlation functions. For the SU(2) Hubbard 
model, antiferromagnetic (AFM) correlations were first observed 
in dimerized lattices25, in un-dimerized three-dimensional (3D) lat-
tices using Bragg spectroscopy26 and in one-dimensional (1D) and 
two-dimensional (2D) lattices using quantum gas microscopy27,28. 
However, correlations in a uniform SU(N) Hubbard model have 
not been observed previously. Although observing long-ranged 
correlations would be essential to characterize phases of matter 
and their phase transitions, nearest-neighbour spin correlations are 
already of great interest. In many models, the most rapid change of 
nearest-neighbour correlations with temperature can be a proxy for 
the critical temperature, and short-ranged correlations are a key ingre-
dient in pair formation in cuprate and iron-pnictide superconduc-
tors, where short-ranged magnetic correlations appear to be essential 
for the pairing29,30. In this work, we observe the nearest-neighbour 
AFM spin correlations in an SU(6) 173Yb Fermi gas loaded in 1D, 2D 
and 3D optical lattices and measure them as a function of the initial 
entropy in a harmonic trap. These experimental results are compared 
with theoretical calculations with no fitting parameters.

Experimental setup
Figure 1a depicts our physical system. The SU(6) Fermi gas of 173Yb 
with atom number Nptcl = 2.4(1) × 104 is adiabatically loaded into 
1D chain, 2D square and 3D cubic lattices that are constructed by 
a primary optical lattice operating at 532 nm (Methods). The 1D 
chain and 2D square lattices are created by introducing strong  
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tunnelling anisotropy into the cubic lattice. The inter-lattice tun-
nelling is less than 5% of the intra-lattice tunnelling t and is much 
smaller than the other energy scales in the system. In our previous 
work31 we measured the spin correlation of SU(4) fermions loaded 
into a double-well system in which the nearest-neighbour correla-
tion is artificially enhanced by strong dimerization. However, in the 
present work, the SU(6) fermions are loaded into uniform lattices 
in 1D, 2D and 3D in which there is no trivial enhancement of spin 
correlations due to dimerization.

One can utilize the technique of singlet–triplet oscillations 
(STO)25,32 in an optical superlattice to measure the nearest-neighbour 
correlations, including for SU(N) Fermi gases31. The principle of 
the STO measurement is illustrated in Fig. 1b. Tunnelling is frozen 
except between pairs of adjacent lattice sites along the measure-
ment axis, which are merged into single sites of a detection lattice 
with twice the spacing. Here, we utilize the fact that s-wave pho-
toassociation (PA) only associates pairs of atoms with a spatially 
symmetric wavefunction and thus is only sensitive to spin anti-
symmetric states in each detection site since the total wavefunc-
tion is antisymmetric. Associated molecules quickly escape from 
the trap, resulting in atom loss. Application of a spin-dependent 
potential gradient before the merging process drives oscillations of 
spin symmetry, enabling us to also detect spin symmetric states. In 
this way, we measure the fraction of both ‘singlet’ and ‘triplet’ states 
formed within nearest-neighbour lattice sites. The detected SU(N) 

counterpart of the SU(2) double-well singlet is a 
(
N
2

)
-fold 

multiplet with the form (|σ, τ⟩ − |τ, σ⟩)/
√

2 (where σ ≠ τ represents 
one of the N flavours). Similarly, the double-well triplet is extended 

to a 
[(

N
2

)
+ N

]
-fold multiplet, among which 

(
N
2

)
 states with the 

form (|σ, τ⟩+ |τ, σ⟩)/
√

2 (σ ≠ τ) are detected by our scheme while 
σ = τ is not. In the following, we represent the fraction of atoms 
forming these ‘singlet’ and detectable ‘triplet’ by Ps and Pt0, respec-
tively. These are not to be confused with SU(N) singlets and triplets, 
which are N-body entangled states13. The STO measurement is valid 
only if the contribution from multiple occupancies can be neglected. 
For this reason, we set the central density to unit filling and the 
interaction to be sufficiently strong to suppress double occupancies 
in the primary lattice. This also maximizes the Pomeranchuk cool-
ing effect because the maximum spin entropy lnN  can be realized 
only in singly occupied sites. The presence of holes results in double 
wells containing only a single atom and does not affect STOs.

As a measure for the nearest-neighbour spin correlation, we con-
sider a singlet–triplet imbalance defined as

I = Ps − Pt0
Ps + Pt0

. (2)

In addition, we consider a normalized STO amplitude

A = Ps − Pt0 (3)
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Fig. 1 | Experimental setup. a, SU(6) Hubbard systems realized in various configurations of a 3D optical lattice. Spin components are labelled by the nuclear 
spin projection quantum number mI. b, Schematic of the experiment. After preparing the equilibrium state (1) and freezing all the tunnelling processes (2), 
a spin-dependent potential gradient is applied to drive STOs (3). Subsequently, every two adjacent lattice sites are merged into single sites of the detection 
lattice, followed by PA which removes atom pairs in antisymmetric spin states (4). c, Typical example SU(6) STO signals measured for the 1D chain lattice. 
The spin correlation signal for the nearest neighbours along the chain axis and along the inter-chain direction are shown in the upper and lower graph, 
respectively. Atom numbers are normalized by the total atom number without molecular association processes, and the deviation from unity represents 
the fraction of singlet states at each time. The initial entropy per particle is (1.45 ± 0.05)kB, and the interaction strength is U/t = 15.3(5). The error bars 
represent the standard deviation for the six independent measurements. d, STO measurement with OSG spin separation. Top: Absorption image of the OSG 
experiment, taken after 5 ms time of flight. Optical density (OD) integrated horizontally is also shown. Bottom: Time evolution of the spin population during 
STO. The solid lines are fits using the two-frequency model in equation (10). A spin imbalance of 3% is evaluated from the independent measurement with 
full six-spin separation. The error bars represent the s.e.m. for the three independent measurements.
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as an alternative measure. As long as the SU(N) symmetry holds, A 
is proportional to the spatial integration of the SU(N) spin correla-
tion function CNN (ref. 33) (Methods) given by

CNN =
∑

σ ̸=τ

[⟨nσ(i)nσ(i+ 1)⟩ − ⟨nσ(i)nτ(i+ 1)⟩] , (4)

where nσ(i + 1) is a shorthand we use throughout for number opera-
tors at a nearest neighbour of i. In the trap, A will be drastically 
reduced compared with the uniform unit filled case because of the 
low density at the edge of the sample, and incorporating the effect 
of the harmonic confinement is important to compare calculations 
of A with experiments. Note that the singlet and triplet fractions can 
be determined if we know both I and A.

Figure 1c shows a typical STO signal measured in a 1D chain lat-
tice. To create the spin-dependent potential gradient, we utilize lin-
early polarized laser light close to the 1S0 → 3P1 resonant frequency 
(Methods). As a result, STOs are driven for the spin pairs with different 
∣mI∣ values (1/2, 3/2, and 5/2), resulting in three different STO frequen-
cies. The ratio of these frequencies ω 1

2−
3
2
: ω 3

2−
5
2
: ω 5

2−
1
2
= 1 : 2 : 3 

is determined by the Clebsch–Gordan coefficients and does not 
depend on detuning (Methods). We analyse the STO signal, assum-
ing the SU(N) symmetry, namely that all spin combinations con-
tribute equally to correlations. Along the chain axis, we obtain a 
singlet–triplet imbalance of I = 0.674 ± 0.052, indicating the large 

AFM correlation (CNN < 0). On the other hand, correlations between 
chains are zero within the error bar (I = 0.01 ± 0.01) as expected from 
the negligible inter-chain tunnelling.

To verify the expected SU(6) symmetry, we observe the time evo-
lution of each nuclear spin component during STOs. After the stan-
dard STO process (driving STO, merging double wells and applying 
PA), lattice potentials are ramped down adiabatically in 6 ms to 
suppress momentum spread. Then, we turn off the optical trap, fol-
lowed by the application of the optical Stern–Gerlach (OSG) beam 
for 0.2 ms. The OSG light source is identical to that used for the 
gradient beam for driving STO but with nearly three times higher 
intensity. Therefore, the OSG beam is π polarized and distinguishes 
only spin components with different ∣mI∣. Figure 1d shows analysis 
of the spin distribution. The behaviour is well reproduced by the 
two-frequency model (Methods), indicating that the STO scheme 
is working as designed. The fit to oscillations of the ∣mI∣ = 1/2 cloud 
seems slightly worse than the others. This is due to the stronger 
deformation of the cloud and possibly spin flips caused by the pho-
ton scattering from the OSG laser. We confirm that the deviation of 
each spin population from the balanced mixture is about 3% and 
this does not affect the following results.

Results
Antiferromagnetic nearest-neighbour spin correlations. Figure 
2a,b shows the nearest-neighbour correlations for the 1D and 
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Fig. 2 | Entropy dependence of the nearest-neighbour correlations of the SU(N) FHM at U/t = 15.3. a,b, Entropy dependence of the normalized STO 
amplitude A (a) and the singlet–triplet imbalance I (b) in 1D and 3D lattices, showing experimental data for the SU(6) 1D (green squares), SU(6) 3D (red 
circles) and SU(2) 1D systems (blue triangles) with the results of ED (solid lines) and DQMC (dashed lines) calculations. Horizontal error bars represent 
the s.d. of the ten entropy measurements, while vertical error bars are extracted from the fitting errors in the analysis of the STO signal. Shaded areas 
represent uncertainty from the systematic and statistical errors of the numerical methods (see Methods for more details), and the possible systematic 
error (20%) in the total atom number measurement, summed linearly. c–e, Observables as a function of distance to the centre of the trap for the 1D 
system with trap parameters as in the experiments calculated by ED, showing particle number per site (c), entropy per site (d) and nearest-neighbour 

spin correlation per site (e) as a function of Rresc/a, where the rescaled radii are Rresc =
√

∑

a=x,y,z(ωara/ω)2 , a = 266 nm is the lattice constant 

and ω = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies, for N = 6 at U/t = 15.3 in an L = 8 site chain at kBT/t = 0.1, 0.5 and 1.0. These 

temperatures correspond to S/NptclkB = 1.75, 2.17 and 2.54, respectively.
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3D lattices as a function of entropy per particle, with a dramatic 
enhancement of SU(6) spin correlations compared with the SU(2) 
correlations in the 1D system. The total entropy S is inferred from 
a time-of-flight measurement of the weakly interacting gas before 
lattice loading. The on-site interaction is fixed to U/t = 15.3(5) 
for all lattice configurations, which is determined from the band 
calculation with measured lattice depths. In this strongly interact-
ing regime, an important scale is the maximum spin entropy per 
particle for a singly occupied site, given by s(N)

spin = kB lnN , where 

kB denotes the Boltzmann constant. Naïvely, ignoring the spatial 

inhomogeneity of the trap, a sample with S/Nptcl < s(N)

spin is expected 

to reach the temperature regime where the spin correlations emerge. 

For SU(6), s(6)spin = 1.79kB, while for SU(2), s(2)spin = 0.69kB, and N = 6 

systems are therefore expected to show remarkably enhanced 
correlations, which is interpreted as the enhancement of the 
Pomeranchuk effect due to large spin34–36. Our microscopic theory 
confirms this simple picture, and the observed data show reasonable 
agreement with theoretical predictions obtained by exact diagonal-
ization (ED) for 1D and by determinantal quantum Monte Carlo 
(DQMC) for 3D, without any fitting parameters.

Here, we suggest a possible origin of the small deviation observed 
between the theory and experiment. Given the extensive tests we 
have done on our codes and experiments, we consider an actual error 
in the calculations or the experiments unlikely. The remaining possi-
bility is the fundamental differences between the model being simu-
lated and the atomic system being measured. On the computational 
side, we have carefully investigated Trotter errors, finite-size effects 
and the use of the local density approximation (LDA) (Methods). 
The calculations assume that the loading is adiabatic, while 
non-adiabatic loading of the atoms to the lattice may play some role 
in the experiments. For the 1D SU(6) case, the correlations measured 
in the low-entropy region are smaller than the theoretical curve by 
~30%, and it is plausible that the main source of the discrepancy is 
the non-adiabaticity of the lattice loading. We estimate the amount 
of heating to be 0.2kB around the lowest temperature (Methods). For 
the higher-entropy region in the 1D SU (6) case, on the other hand, 
the measured correlations are larger than the theoretical predictions. 
Although experiments start with a weakly interacting gas, it is pos-
sible that some of the initial correlations are frozen during lattice 
loading, which could be a source of the small remaining discrepan-
cies between the experimental results and theory.

Figure 2c–e shows theoretically calculated trap profiles of 
atom number, entropy and nearest-neighbour spin correlations 
per site for a 1D system. A rigid Mott plateau is well developed at 
kBT/t ≈ 0.5, and spin correlation develops rapidly for lower tempera-
ture. Estimation of the temperature obtained in our experiment is 
discussed in the next section.

Extracting temperature in an optical lattice by theory–experiment 
comparison. The present experiments cannot directly measure the 
temperature at the very low entropies studied here. However, for the 
1D systems, the temperature can be inferred by comparing experiment 
and theory. In 1D, the lowest temperature achieved in the experiments 
is kBT/t = 0.096 ± 0.054 ± 0.030, obtained from the singlet–trip-
let imbalance I measured experimentally at S/NptclkB = 1.45 ± 0.05 
(Extended Data Fig. 1). The first error is an estimate of the finite-size 
error given by the difference between the finite-size extrapolation to 
the thermodynamic limit and the eight-site result. The second error 
comes from the experimental uncertainty on the correlations. This is 
lower than the state-of-the-art temperatures reported in cold-atom 
FHM systems26,28,37–39. Estimates based on A rather than I are simi-
lar (Methods). The agreement between theory and experiment in 1D 
suggests the reliability of the experiment in higher dimensions where 
numerics fail and quantum simulation via experiment is crucial.

For comparison, at the same entropy, the SU(2) system is at 
kBT/t = 1.008 ± 0.073 ± 0.001, or to obtain the same singlet–triplet 
imbalance, the SU(2) system should be at S/NptclkB = 0.499 ± 0.136 
± 0.120. Since the state-of-the-art averaged entropy per particle for 
SU(2) experiments with alkali atoms is around 1kB (ref. 28), this sug-
gests an experimental advantage for SU(N) systems in obtaining 
highly correlated states in optical lattices.

Dependence on lattice dimensionality. In addition to the depen-
dence on N, the correlations depend drastically on dimensional-
ity, with the 1D case exhibiting the largest correlations as shown in  
Fig. 3a,b. This behaviour is similar to previous studies in an SU(2) 
system40–42 and can be understood at sufficiently high temperatures. 
In this regime, correlations depend only on temperature not dimen-
sion (this intuitive result can be proved with a high-temperature 
expansion) and decrease with increasing temperature. Additionally, 
decreasing dimension decreases the bandwidth and thus, at fixed 
entropy, decreases the temperature (Fig. 3b). Together, these imply 
that correlations decrease as the dimensionality is increased. The 
situation at lower temperatures is expected to be more complicated, 
but the numerics indicate that this simple conclusion remains true. 

0.1 1 10 0.1 1 10 0
0

1

2

3

1 2 3 4 0.6

0.6
1D, L = 4

1D (x)
1D (y)

2D (xy) 2D (xy) 3D
3D

2D (xz)
2D (yz)2D (xy)

1D (z)
1D (z)

1D, L = 7

3D

0.5

0.4

0.3

S
T

O
 a

m
pl

itu
de

, A

S
T

O
 im

ba
la

nc
e,

 I

S
T

O
 im

ba
la

nc
e,

 I
D

et
ec

tio
n

0.2

0.1

0.6

z

0.4

0.2

0

1.0

0.8

0.6

0.4

0.2

1.4 2.2 3.0 0.6 1.4 2.2 3.0

kBT/t S/NptclkB

S
/N

pt
cl
k B

S/NptclkBtz/t⊥

t⊥
t⊥

tz/t⊥

a b

Fig. 3 | Dimension dependence of the spin correlations. a, Left: Spin correlations of an SU(6) Fermi gas as the lattice dimensionality is tuned by lattice 
anisotropy from 1D to 2D. Correlations along the z-axis are measured. Lattices are deformed from x-chains (blue circles) and y-chains (red squares) to 
z-chains with U/t = 15.3, via the 2D square lattice with the same U/t. Right: Measurement in 2D–3D crossover. Three possible 2D square lattices are 
connected via the isotropic 3D cubic lattice at U/t = 15.3. The initial entropy is S/NptclkB = 1.4 ± 0.1 for both experiments. The vertical lines indicate the 
isotropic tunneling tz/t⊥ = 1. b, The entropy per particle, normalized STO amplitude and singlet–triplet imbalance for N = 3 in L-site chains and a 4 × 4 × 4 
cubic lattice for U/t = 8. Note that the results for L = 4 and L = 7 in 1D are nearly identical.

Nature Physics | www.nature.com/naturephysics

http://www.nature.com/naturephysics


ArticlesNaTUrE PHySIcS

Constructing simple arguments for the low-temperature regime 
remains an interesting challenge.

Figure 3a shows the singlet–triplet imbalance measured through 
1D–2D and 2D–3D crossovers with the same initial condition. We 
measure the correlations along the z-axis and change the ratio of 
tz to the tunnelling t⊥ of the initially weak link. At both the maxi-
mum and minimum tz/t⊥ and at the intermediate point tz/t⊥ = 1, we 
set U/tz = 15.3. The lattice geometry is changed smoothly between 
the above three points (see also Methods). We find that spin cor-
relations decrease monotonically as the lattice is deformed from 1D 
to 2D. For the 2D–3D crossover, the difference is smaller but the 
trends of decreasing correlations with increasing dimensionality are 
still visible. The correlation drops quickly for tz/t⊥ < 1 and becomes 
undetectable, as expected.

Numerical calculations show a similar trend. Although DQMC 
has difficulty in obtaining reliable results for 3D systems at the low 
temperatures where remarkable correlations develop for U/t = 15.3 
and N = 6, it can calculate the properties of 3D systems for U/t = 8 
and N = 3 to low temperature where remarkable correlations 
develop. Because we are considering a smaller N, we calculate ED 
results without using the basis state truncation for 1D L-site chains 
with L = 4–7. Figure 3b presents the computed entropy per particle 
and the spin correlations. Although these are not directly the condi-
tions in the experiments, they do show the same trend of correla-
tions decreasing with increasing dimension.

DQMC results for N = 6 are only presented at temperatures above 
T/t = 1, owing to a strong sign problem below this temperature, as 
well as the onset of non-ergodicities in the Monte Carlo sampling 
in this region. The sign problem is particularly strong in the metal-
lic region, where large errors in the observables appear for several 
values of the chemical potential. Reference 43 provides more details 
on how the sign problem depends on U/t and μ/t.

Discussion
We find that the measured nearest-neighbour AFM correlations 
agree broadly with the theory with no fitting parameters for all tem-
peratures in 1D, and at temperatures where converged theoretical 
results can be obtained in 3D. In our work for 3D lattices, we have 
entered the region where converged theoretical calculations are 
unavailable and quantum simulation manifests its usefulness.

While we successfully demonstrate the lowest temperature 
achieved in the FHM in our 1D optical lattice experiment, there 
is still room for reaching even lower temperatures, for example, by 
engineering spatial redistribution of entropy28.

The STO measurement presented here is also applicable to 
spin-imbalanced cases by introducing proper oscillation functions. 
On the other hand, the spin structures measured in this work are 
limited to the SU(2)-type nearest-neighbour singlets and triplets. 
In general SU(N) systems, more nontrivial spin states arise. For 
example, the SU(N) singlet given by the fully antisymmetric com-
bination of N spins plays an essential role in SU(N) antiferromag-
nets. Probing such multi-spin entanglement will be an important 
experimental challenge. Measuring the long-range correlations is 
also of interest. One of the most important questions that has not 
yet been answered is whether the long-range ordering persists in the 
SU(N) system. Measuring long-range correlations will be feasible 
by using a quantum gas microscope with a spin-selective detection 
technique. State-of-the-art numerical and analytic calculations, 
with the use of approximations, have proposed a variety of possible 
ground states such as flavour-ordered patterns and valence bond 
solids, among others5–11. Experiments are now poised to discrimi-
nate finite-temperature analogues of such proposed states.
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Methods
Sample preparation. A degenerate Fermi gas of 173Yb is prepared by evaporative 
cooling in a crossed dipole trap operating at 532 nm. The optical lattice also has 
the wavelength 532 nm and the simple cubic geometry. The additional detection 
lattices at 1,064 nm along the z- and x-axes are used only for STO measurement. 
In the main result obtained in Fig. 2, the optical lattices are ramped up to 
s = (sx, sy, sz) = (7.0, 7.0, 7.0) for the 3D cubic lattice, (6.1, 20.0, 6.1) for the 2D (x–z) 
square lattice and (20.0, 20.0, 5.0) for the 1D (z-)chain lattice. Here, sx,y,z are the 
lattice depths in units of the recoil energy ER = ℏ2(2π/λ)2/2m with atomic mass m 
and the wavelength of the lattice laser beams λ = 532 nm, where ℏ is the reduced 
Planck constant. In the dimensional crossover experiment shown in Fig. 3, the 
lattice geometry is changed smoothly in the form s = (1 − p)s1 + ps2 (0 < p < 1), 
where s1 and s2 take the values given above for definite dimensionalities, as well as 
(6.1, 6.1, 20) for 2D (x–y) square and (5.0, 20.0, 20.0) for 1D (x-)chain lattices. The 
dipole trap together with the optical lattice creates an overall harmonic potential for  
the sample, whose trap frequencies are (ωx′ , ωy′ , ωz) = 2π × (102, 44, 155) Hz 
for the 3D lattice, 2π × (105, 49, 158) Hz for the 2D lattice and 2π × (107, 54, 162) Hz 
for the 1D lattice. The principal axes of the trap x′ and y′ are tilted by 45° from 
the lattice axes x and y, within the horizontal plane. For the experiment shown in 
Extended Data Fig. 2, the trap frequency depends weakly on U/t with the variations 
within 10%.

The entropies of atomic gases are calculated numerically using the temperature 
obtained by fitting the Thomas–Fermi distribution to time-of-flight images of 
harmonically trapped samples. The effect of the repulsive interaction is evaluated 
within mean-field theory, which predicts entropies up to 6% higher than that of 
non-interacting gases. The effect of interaction during cloud expansion causes an 
additional systematic error in the entropy, which is estimated to be smaller than 
10%. Trap anharmonicity is also evaluated, and we conclude that the correction is 
no more than 5% of the pure harmonic value.

Non-adiabatic heating is observed during the lattice loading process. We 
compare the spin correlations after the normal loading and the ‘round-trip’ 
process in which we once decrease the lattice down to the minimum depth 
where evaporation is negligible, followed by ramping up again. This results in the 
decrease of the singlet–triplet imbalance by 50–60% for all lattice configurations, 
corresponding to one-way heating of 0.2kB per atom in the 1D case. This is 
consistent with the widely used method of measuring the entropy increase after the 
gas loaded to and released from the lattice potential, which in our case implies a 
heating of (0.15–0.35)kB.

SU(6) STO. To generate a spin-dependent potential gradient, we apply an optical 
Stern–Gerlach laser beam close to the 1S0 → 3P1 resonance. The detuning of 
+2.6 GHz from the F = 5/2 → 7/2 transition is selected to minimize the ratio of the 
photon scattering rate to the differential light shifts.

The STO signal is analysed by comparing the total atom number with the 
number of atoms remaining after removing singlets by PA via the resonance that 
is located at −812 MHz from the 1S0 → 3P1 (F = 7/2) transition31. Assuming that the 
SU(6) symmetry is not broken, the functional form of the time evolution of the 
remaining atom number is

N(t) = −a exp(−t/τ) [cos ωt + cos 2ωt + cos 3ωt] + b, (5)

with fitting parameters a, b, τ and ω. The oscillation frequency ω is determined 
from the differential light shift of each spin pair. In general, a differential light shift 
of a pair (mI, m′

I ) is of the form 
∑

F′ f(δF′ )[C(F′, mI) − C(F′, m′

I )], where f is a 
function of the detuning δF′ from the excited hyperfine states F′ and C(F′, mI) is 
the transition strength. The constant frequency ratio (ω, 2ω, 3ω) follows from the 
fact that, for linear polarization, [C(F′, mI) − C(F′, m′

I )] can be reduced to the 
separated form C′(F′)R(mI, m′

I ). Photon scattering and the inhomogeneity of the 
gradient due to the Gaussian shape of the OSG beam with intensity ~15 W cm−3 
cause a decay of the STO signal, which is described by the exponential decay 
term in equation (5). The gradient beam propagates along the y-axis, and the 
measurement along the z-axis is chosen to suppress the effect of inhomogeneity.

Among the 
(
6
2

)

= 15 spin combinations relevant to STO, linearly polarized 

light gives rise to the differential light shifts for 12 combinations with different 
absolute values of mI. The remaining three combinations with the same ∣mI∣ do not 
show STO. Therefore, the singlets formed by these pairs are always removed by PA 
during STOs, and the corresponding triplets always remain in the trap. Taking this 
fact into account, the singlet and triplet fractions in the SU(6) case are expressed as

Ps =
1

Nptcl

[
Nptcl − D + 3a − b

]
, (6)

Pt0 =
1

Nptcl

[

Nptcl − D −

9a
2 − b

]

. (7)

where Nptcl is the total atom number without PA and D is the number of atoms 
on doubly occupied sites (typically less than 3% of Nptcl), which are measured 

independently without merging and STO processes. Multiple occupancies higher 
than double are negligibly small. PA light causes also one-body loss induced by 
photon scattering, which gives rise to an overestimate of the two-body PA loss. In the 
presence of one-body loss, the substitution N(t) → eγτPAN(t) is required in analysing 
STO, where γ is the one-body loss rate and τPA is the PA pulse duration. In our 
experiment, γ is found to be 0.3% of the PA rate and the correction to N(t) is typically 
1%. In the SU(2) case, the STO is a simple sinusoid and the analogous expressions are

Ps =
1

Nptcl

[
Nptcl − D + a − b

]
, (8)

Pt0 =
1

Nptcl

[
Nptcl − D − a − b

]
. (9)

An atom with specific ∣mI∣ can show STOs with two possible frequencies. With 
OSG separation, the time evolution of the atom number in each separated cloud 
N|mI| is described by the two-frequency oscillation

N|mI|(t) = −a exp(−t/τ)
[
cos ω|mI|,1t + cos ω|mI|,2t

]
+ b, (10)

with oscillation frequencies

(ω|mI|,1, ω|mI|,2) =






(ω, 3ω) |mI| = 1/2

(ω, 2ω) |mI| = 3/2

(2ω, 3ω) |mI| = 5/2.

(11)

Figure 1d agrees well with these behaviours of equation (10), confirming the 
validity of the present analysis of STO.

Numerical calculations for homogeneous systems. DQMC and ED calculations 
are used to obtain the values of the thermodynamic quantities, including the 
density, entropy and nearest-neighbour spin correlation function for homogeneous 
systems. These results are used to compute the properties for the trapped system 
using the LDA, which is described below.

ED results were obtained in L-site chains by performing full diagonalization 
over a reduced Hilbert space (described below) and using finite-size scaling. For 
computational efficiency, we exploit two aspects of the SU(N) symmetry. Particle 
number conservation for each spin flavour

[Nσ , H] = 0 (12)

with Nσ = ∑jnσ(j) and the translation symmetries allow us to block-diagonalize the 
Hamiltonian. Furthermore, we exploit the spin permutation symmetries

[
Sσ

τ , H
]
= 0, ∀σ, τ = 1, …, N (13a)

with

Sσ
τ =

∑

i
Sσ

τ (i) =
∑

i
c†iσciτ , (13b)

which relate many of the sectors of the Hamiltonian, and therefore one needs to 
diagonalize only one representative from each sector.

In addition to the (exact) symmetries, we employ a basis state truncation, 
which we converge systematically. First, the Hilbert space only includes states with 
total particle number less than or equal to a fixed particle number Nmax. Second, it 
omits states if the total on-site energy (the energy associated with the presence of 
multiple occupancies in the cluster) is larger than Ecut. We present results obtained 
from Nmax = L + 1 and Ecut = U for L = 5–7 and Nmax = L for L = 8. Extended 
Data Fig. 3 shows that the results for the STO amplitude versus entropy with these 
truncations are converged to ~10−5.

DQMC results for 4 × 4 square and 4 × 4 × 4 cubic lattices were obtained by 
introducing N(N − 1)/2 auxiliary Hubbard–Stratonovich fields, one for each 
interaction term niσniτ. Note that previous works applied DQMC to the half-filled 
SU(2N) FHM using a different, discrete complex Hubbard–Stratonovich 
decomposition44,45. Following our new approach, DQMC calculations for fillings 
below 1.5 particles per site at U/t = 15.3 can be obtained reliably for temperatures 
kBT ≥ t. At lower temperatures, correlation functions become inaccessible to DQMC 
owing to sign and ergodicity problems. DQMC data were obtained for five different 
random seeds, each with 8,000 sweeps through the lattice and the N(N − 1)/2 
auxiliary fields for equilibration and 10,000 sweeps for measurements. The inverse 
temperature was discretized as β = LΔτ with a Trotter step of Δτ = 0.025/t. Results 
are obtained in μ–T grids with dμ = 0.25 and dT given by the Trotter step for all 
integers L ≥ 2. These results are linearly interpolated before computing the entropy 
and using the LDA. The entropy per site is computed as the integral of the specific 
heat, which by thermodynamic relations can be rearranged to

s(μ, T) = N log(2) + f(μ, T)
T

−

∫
∞

T

f(μ, T′)

T′2 dT′, (14)
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where f = ϵ − μn, and ϵ and n are the energy and particle number per site, 
respectively. To accelerate convergence, we obtain DQMC results up to a 
temperature cut-off Tcut and use the leading-order high-temperature series term 
(t = 0) in the integral in equation (14) for T > Tcut.

LDA. Local values of thermodynamic quantities and correlation functions are 
obtained using the LDA, which replaces intensive observables at a spatial location r 
with their value in a homogeneous system with chemical potential μ(r) = μ0 − V(r), 
where μ0 is the global chemical potential and V(r) is the external confinement. 
Applied to the total particle number and the total entropy, this gives

Nptcl =

∫ d3r
a3

n(μ0 − V(r), T), (15)

S =

∫ d3r
a3

s(μ0 − V(r), T), (16)

where n/a3 and s/a3 are the density and entropy density calculated for the 
homogeneous system. The variables that can be measured experimentally are 
Nptcl and S rather than μ0 and T, but given the homogeneous functions n(μ, T) and 
s(μ, T), then μ0 and T can be obtained from Nptcl and S by solving equations (15) and 
(16) numerically.

As derived below, the STO amplitude A and imbalance I are related to the 
correlation CNN, defined in equation (4), and to the correlation 〈n(i)n(i + 1)〉 by

A = −

1
Nptcl

[CNN]tot, (17)

I = 2A
1

Nptcl
[n(i)n(i + 1)]tot + A

(18)

in the LDA, where we define

[O]tot =

∫ d3r
a3

⟨O(μ(r), T)⟩. (19)

In practice, we calculate plots of observable versus T or S as follows: First, we 
calculate a list of points (T, μ0) where μ0 is obtained by solving equation (15) for 
given T and the particle number Nptcl measured in experiment. Then, for each such 
obtained (T, μ0), we calculate S and other trap-summed observables of interest. In 
this way, we plot trap-summed observables as functions of T. Details on the grid 
used and discretization error introduced are given below.

Trap geometry. Owing to the large atomic mass of Yb, the effect of gravity is severe 
for our optical trap, especially in the final stage of evaporative cooling (Extended 
Data Fig. 4a). To include the anharmonic effect in our LDA calculation, we 
evaluate the density of state (DOS) defined as

D(E) =
∂Σ

∂E , Σ(E) =
∑

lattice sites i
Θ
(
E − Ṽ(ri)

)
, (20)

where Ṽ(ri) is the full external potential at the site i except the periodic part 
forming optical lattices. Note that this DOS function becomes exact only in 
the atomic limit t → 0 but is always valid for use in the LDA integral described 
below. Trap-summed observables are calculated using equations (15)–(19). These 
integrals over space are then rewritten as integrals over energy with the DOS:

[O]tot =

∫

dED(E)⟨O(μ0 − E, T)⟩. (21)

In the harmonic approximation, the DOS is given by

D(E) =
2π

a3

( 2
mω̄2

)3/2
E1/2, (22)

where ω̄ is the geometric mean of the trap frequencies.
Extended Data Fig. 4b shows the evaluated DOS for the 3D cubic lattice. In 

calculating equation (20), we exclude the spatial region outside the potential 
barrier, where Ṽ(ri) becomes a uniformly decreasing function along the direction 
of gravity (Extended Data Fig. 4a). In the low-energy region, the DOS is well 
reproduced by the harmonic approximation. As energy increases, the DOS 
starts to exceed the harmonic prediction due to the nearly flat potential where 
the optical potential gradient is competing with the gravitational one. For even 
higher energies, the DOS falls below the harmonic approximation because the 
contribution is limited to only from the upper half of the trap. The difference 
between the results calculated in the harmonic approximation and using the full 
potential is small, never larger than 2.4 × 10−2 for the normalized STO amplitude 
and imbalance in the range of entropies presented herein.

STO amplitude and imbalance. In the limit where there are no multiple 
occupancies, the populations in the singlet and triplet states psστ(i) and pt0στ(i) for 
an STO with spin components σ and τ in the dimer located on sites i and i + 1 are 
given by the expectation value of the projection operators

P̂sστ(i) = 1
2
(
c†i,σc†i+1,τ − c†i,τc†i+1,σ

)

× (ci+1,τci,σ − ci+1,σci,τ) ,
(23)

P̂t0στ(i) = 1
2
(
c†i,σc†i+1,τ + c†i,τc†i+1,σ

)

× (ci+1,τci,σ + ci+1,σci,τ) .
(24)

Note that these refer to SU(2) singlets involving components σ and τ 
rather than SU(N) singlets. It is useful to introduce spin-1/2 operators 
Szστ(i) = [nσ(i) − nτ(i)]/2 for the pair of states σ and τ. By the SU(N) symmetry, 
the population difference and sum are equal to25

psστ(i) − pt0στ(i) = −4⟨Szστ(i)S
z
στ(i + 1)⟩, (25)

psστ(i) + pt0στ(i) = + 1
2 ⟨n(i)n(i + 1)⟩

−2⟨Szστ(i)Szστ(i + 1)⟩.
(26)

The fractions of atoms forming singlets Ps = Ns/Nptcl and triplets Pt0 = Nt0/Nptcl are 
obtained from a sum over each dimer in the lattice, or equivalently (1/2)∑i⋯, and 
all the possible σ–τ spin pairs,

Ps =
2

Nptcl



 1
2
∑

i



 1
2
∑

σ ̸=τ

psστ(i)







 , (27a)

Pt0 =
2

Nptcl



 1
2
∑

i



 1
2
∑

σ ̸=τ

pt0στ(i)







 . (27b)

Therefore, the global STO amplitude is

A = Ps − Pt0 =
∑

i

∑

σ ̸=τ

[
−4⟨Szστ(i)Szστ(i + 1)⟩

2Nptcl

]

, (28)

which in terms of the nσ(i) is

A = −

∑

i

∑

σ ̸=τ

[
⟨nσ (i)nσ (i+1)⟩−⟨nσ (i)nτ(i+1)⟩

Nptcl

]

= −

1
Nptcl

∑

i
CNN(i).

(29)

The STO imbalance I is defined as

I = Ps − Pt0
Ps + Pt0

, (30)

so

I = 2A
1

Nptcl

∑
i⟨n(i)n(i + 1)⟩ + A

, (31)

where 〈n(i)n(i + 1)〉 is the density–density correlation function. Equations (29)–(31)  
directly yield equations (17) and (18).

Thermometry in 1D. Extended Data Fig. 1 shows how we determine the lowest 
temperature achieved in the 1D experiments (kBT/t = 0.096 ± 0.054 ± 0.030). 
Estimates based on A rather than I give a similar result. The estimate based on 
the lowest entropy before lattice loading predicts a somewhat lower temperature, 
although still consistent within error bars. A small increase in temperature could 
result from non-adiabatic effects during the lattice loading. Extended Data Fig. 2 
shows the interaction dependence of the spin correlations. The tendency towards 
larger discrepancy between theory and measurement with larger interactions 
(equivalent to deeper lattice depths) suggests that heating is important for  
deeper lattices.

ED error estimates. Errors for the ED results arise from two sources: finite-size 
error and truncation of the Hilbert space using the on-site energy and maximum 
particle number criteria. Extended Data Fig. 5 presents the normalized STO 
amplitude and imbalance for SU(2) and SU(6) in 1D for different system sizes 
of L = 5–8, as well as the finite-size extrapolation. Results in the main text are 
presented after finite-size scaling at fixed entropy per particle, which is performed 
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by fitting the results for L = 5–8 to OL = O∞ + m/L with O∞ and m as fitting 
parameters. Validity of the Hilbert space truncation is tested by varying the energy 
cut-off Ecut as well as the maximum particle number Nmax. Extended Data Fig. 3 
demonstrates that, for the interaction strengths considered herein, the truncation is 
extremely accurate, with no visible differences for any parameters.

DQMC error estimates. The DQMC results have several sources of error, which 
are estimated and presented in Extended Data Table 1 for SU(6) and U/t = 15.3 and 
in Extended Data Table 2 for SU(3) at U/t = 8. All error estimates are presented 
after the adiabatic loading calculation obtained by calculations for a 4 × 4 × 4 lattice 
at kBT/t = 1 unless explicitly stated otherwise. In this section, we briefly discuss how 
each error source was estimated.

The largest and most difficult to quantify error comes from finite-size 
effects. As a proxy, we estimate finite-size effects in two different ways. Our 
first estimate is a spot check comparison between the 3 × 3 × 3 and 4 × 4 × 4 
systems at fixed T/t and density. We obtain CNN(4 × 4 × 4) = −0.096 ± 0.004 
and CNN(3 × 3 × 3) = −0.125 ± 0.005 at the lowest temperature (T/t = 1) for a 
homogeneous system at 〈n〉 = 1, and this error decreases rapidly with increasing 
temperature. Note that this error may be dominated by the error of the smaller, 
3 × 3 × 3 system rather than reflecting the smaller error in the 4 × 4 × 4 system. Our 
second estimate is by studying 2D, and taking the difference between the 4 × 4 
results and the 6 × 6 results for the full computations of LDA-averaged observables. 
Larger system sizes, in particular in 3D, remain inaccessible at present.

The inverse temperature discretization error is estimated as the difference of 
the results obtained with Trotter steps of Δτ = 0.025 and Δτ = 0.05.

The entropy per site s at temperature T is given by equation (14). Errors in the 
calculation of s arise from the finite value of the temperature cut-off Tcut. This error 
was estimated in the homogeneous case by comparing the results obtained with 
kBTcut/t = 500, 800 and 1,000.

Errors in numerical integration procedures such as the LDA summing of 
observables in the trap and the computation of the entropy are estimated by 
varying the coarseness of the μ–T integration grids. Such estimations were 
obtained by coarsening them by a factor of two and comparing the results.

Statistical errors are presented for both the homogeneous case and after 
adiabatic loading for five different random seeds. These errors are presented as  
the s.e.m.

Data availability
All the data presented in this paper are available from the corresponding author 
upon reasonable request.

Code availability
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the corresponding author upon reasonable request.
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Extended Data Fig. 1 | Temperature of a 1D SU(6) Fermi gas at U/t = 15.3. The vertical dashed lines indicate the range of the largest experimentally 
measured STO imbalance in 1D that is consistent with error bars. The temperature of this datapoint is inferred from the finite-size scaling curves and the 
results are summarized in panel (d). The fss error is a conservative estimate of the finite-size error, the difference between the finite-size scaled results and 
the L = 8 site chain. The exp error comes from the experimental uncertainty on the correlations.
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Extended Data Fig. 2 | Interaction dependence of the nearest neighbor correlations. Behavior of (a) STO amplitude and (b) singlet-triplet imbalance in 
1D and 3D lattices are shown. Experimental data is shown for SU(6) systems with initial entropy S/NptclkB = 1.4 ± 0.1. The error bars are extracted from the 
error of fit in the analysis of the STO signal. Solid lines are the result of exact diagonalization calculations for S/NptclkB = 1.4, and the error bars correspond 
to the sum in quadrature of the finite-size error and the basis-state truncation error. The inset presents the entropy per particle extracted by fitting it to 
reproduce the experimentally measured spin correlations. Results saturate at S/NptclkB = 1.818 ± 0.005. Error bars in the inset come from the experimental 
uncertainty on the correlations.
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Extended Data Fig. 3 | Normalized STO amplitude for an SU(6) Fermi gas in an L = 5 site chain with U/t = 15.3 for different truncations of the Hilbert 
space. Basis states with an on-site energy larger than the energy cutoff Ecut, as well as those that exceed the maximum particle number Nmax are 
disregarded. There is no visible difference between calculations. The inset shows the absolute value of the difference between the Ecut = 2U, Nmax = 7 
and Ecut = U, Nmax = 5 curves.
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Extended Data Fig. 4 | Trap anharmonicity. (a) Full external potential (optical + gravity) profile along the direction of gravity z. The shaded region is 
excluded from the calculation of DOS. (b) Density of states calculated from the external potential for the 3D cubic geometry. The corresponding harmonic 
approximation is also shown. The atoms are sensitive only to the density of states for E/t ≲ 10.
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Extended Data Fig. 5 | Finite-size scaling in 1D. Normalized STO amplitude and imbalance for SU(2) and SU(6) Fermi gases in L-site chains and the 
results after finite-size scaling (fss) for U/t = 15.3. The inset in panel (b) illustrates the finite-size scaling procedure.
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Extended Data Table 1 | Error estimates for the DQMC calculation at U/t = 15.3. Errors are presented at kBT/t = 1. Most errors decrease with increasing 
temperature. The top two rows estimate errors by considering homogeneous systems as follows: “Finite Tcut” is the error by a non-infinite value of Tcut in 
entropy integrations estimated by the difference of kBTcut = 1000 and 500. “Statistical” estimates is the standard error of the mean, taken at its largest value 
over all μ and T considered. The bottom 5 rows come from results after adiabatic loading in the trap, as follows. “Finite size (2D)” is the finite-size error 
estimated by the difference between A(S) in 4⨯4 and 6⨯6 geometries, “Trotter-step” is the Trotter error estimated by the difference of A(S) for Trotter step 
size Δμ = 0.05 and 0.025, “μ-grid coarseness” and “T-grid coarseness” are the estimates of the errors associated with discretizing μ and T by taking the 
difference of the result after doubling the grid spacing, and “Statistical (adiabatic loading)” is the standard error of the mean of the DQMC.
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Extended Data Table 2 | Error estimates for the different error sources involved in the DQMC calculation for U/t = 8 and N = 3. Row labels are the same 
as in Extended Data Table 1. The first three rows are for homogeneous systems while the last is for the A(S) after adiabatic loading. For homogeneous 
system results, we report the largest error in the whole range of temperatures/entropies considered. The T grid coarseness error for S vs T monotonically 
increases from 2.0 × 10−2 at kBT/t = 0.64 to the value reported in the table, 1.3 × 10−1, at kBT/t = 4.
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