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We introduce a classical analog of quantum matter in ultracold molecule-synthetic or Rydberg atom-synthetic
dimensions, by extending the Potts model to include interactions J1 between atoms adjacent in both real and
synthetic space and studying its finite-temperature properties. For intermediate values of J1, the resulting phases
and phase diagrams are similar to those of the clock and Villain models, in which three phases emerge. There ex-
ists a sheet phase analogous to that found in quantum synthetic dimension models between the high-temperature
disordered phase and the low-temperature ferromagnetic phase. We also employ machine learning to uncover
nontrivial features of the phase diagram using the learning by confusion approach, which is able to discern
several successive phase transitions.
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I. INTRODUCTION

Recently experiments on synthetic dimensions—where
transitions between nonspatial degrees of freedom can be
regarded as motion in an additional lattice direction—have
explored physics difficult to realize in real space, such as topo-
logical band structures and phases [1–3], gauge potentials[4],
and spatially resolved nonlinear dynamics [5]. Introduced in
Ref. [6], synthetic dimensions were later explored in several
platforms, including with synthetic sites formed from momen-
tum states or states of light [7].

We are motivated by synthetic dimensions formed by pe-
riodic arrays of ultracold polar molecules or Rydberg atoms
in optical lattices or microtrap arrays, specifically a two-
dimensional (real-space) square lattice. Such an array of
Rydberg atoms with synthetic dimensions was realized in Ref.
[8]. The rotational states of molecules or electronic states
of the Rydberg atoms provide the sites of a synthetic third
dimension, and microwaves induce tunneling matrix elements
between the synthetic lattice sites. These systems are de-
scribed by the quantum many-body Hamiltonian [3,9]:

Ĥ = −
∑
i,n

Jn ( c†
i,nci,n+1 + c†

i,n+1ci,n)

+
∑
〈i, j〉,n

Vn c†
i,n+1ci,nc†

j,nc j,n+1. (1)

The first term describes tunneling between synthetic sites n
at each real-space site i, induced by resonant microwaves,
while the second term describes an interaction in which
atoms or molecules on nearest-neighbor real-space and syn-
thetic sites exchange their synthetic positions. 〈i, j〉 indicates
a sum over nearest real-space neighbors. Longer-ranged
real-space interactions are also present in experiments,
but the nearest-neighbor truncation is likely to describe many
of the qualitative features of the phase diagram.

Since each molecule occupies a unique real-space site, the
relevant subspace satisfies

∑
n c†

i,nci,n = 1. In general Jn and
Vn depend on n, the choice of internal states, and the mi-
crowave drives, but in the simplest cases they are independent
of n [9].

Some interesting physics has been predicted for these sys-
tems: whereas the hopping J leads to delocalization in the
synthetic direction, the interaction V drives “sheet formation”:
for low temperature and large V/J , molecules on adjacent sites
〈i, j〉 will share a common pair of rotational states n, n + 1,
flattening the system in the synthetic direction, though with
quantum and thermal fluctuations. So far, predicted phase dia-
grams have been limited to simple variational techniques [9],
exact solutions in one real dimension [10], or certain sign-
problem free regions and observables with quantum Monte
Carlo methods [11], which have only begun to be explored.

Equation (1) can also be viewed as a large-spin spin model,
with the size of the spin S set by the number of synthetic sites
Ns = 2S + 1, albeit with interactions and symmetries that are
unusual or awkward to describe in the spin language (espe-
cially in the general case where the Jn or Vn have interesting
dependences on n). In this way, there is a similarity to the
classical Potts or clock models, where there are likewise q
possible choices for the variable at each site, with a single one
of them “occupied” in any given configuration.

However, while corresponding classical spin models would
provide important guidance for the physics of the quantum
model, the analogy to classical Potts or clock models has
serious shortcomings. The Potts model is invariant under
permutations of any of the spin components, a much larger
symmetry than the translation symmetry obtained by translat-
ing by one site in the synthetic direction (assuming a large
synthetic dimension or periodic boundary conditions). This
potentially can cause the Potts model analog to host unrealis-
tically large fluctuations and varieties of symmetry-breaking
phases. The clock model is another analog classical model,
and it enjoys the correct translation symmetry for translating

2469-9926/2024/109(1)/013303(11) 013303-1 ©2024 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.013303&domain=pdf&date_stamp=2024-01-03
https://doi.org/10.1103/PhysRevA.109.013303


MAX COHEN et al. PHYSICAL REVIEW A 109, 013303 (2024)

spin indices. However, it has couplings between all spin states,
even ones that have large [O(Ns)] separations in the synthetic
dimension, in contrast to the local nearest-synthetic-neighbor
couplings in the synthetic dimension model Eq. (1) (Potts and
clock models are discussed in more detail below) [12–14].

In this paper, we introduce a classical analog model captur-
ing the salient features of synthetic dimensions that remedies
these deficiencies of the Potts and clock models. We do this
by extending the Potts model to include an additional nearest-
synthetic-neighbor term, J1, to the Potts model, as described
in the next section, which breaks the permutation symmetry
to a translation symmetry (unlike the naïve Potts), while pre-
serving locality in the synthetic dimension (unlike the clock
model).

Although our motivation is to examine a simple version of
a quantum model of synthetic dimension, as we shall discuss,
our variant of the Potts model itself has a rich phenomenology,
including a nonmonotonic behavior of the critical tempera-
ture as a function of J1, and the formation of sheet states in
analogy to the quantum membrane states in the corresponding
quantum model. It also offers an interesting context in which
to extend machine learning methods for statistical mechanics.
While our paper could certainly be viewed simply as an

interesting extension of a traditional spin model, considering
it in the language of synthetic dimension provides additional
context to the paper, as well as potential experimental (cold
molecule or Rydberg atom) connections.

We also note that, interpreted as spin models, synthetic
dimensions have obvious parallels in the condensed-matter
context. The different angular momentum states in d and f
electron systems can be considered as a synthetic site index,
though in most real solids one-body effects like crystal-field
splitting break the orbital degeneracy and reveal the true
“spin nature” of the model, limiting its interpretation as an
additional dimension. Nevertheless, the classical model we
introduce may have commonalities with the interactions in
real materials, and suggests phases that may occur there.

After introducing the model and our primary computa-
tional methodology (Sec. II), we will examine the physics
within a mean-field theory (Sec. III) before presenting nu-
merically exact calculations of properties with Monte Carlo,
and inferences for the phase diagram (Secs. IV, V, and VII).
We will then turn towards a machine learning approach to
analyzing the results (Sec. VI), and finally summarize our
conclusions.

II. MODEL AND MONTE CARLO METHODOLOGY

The Potts model [12] is a generalization of the Ising model
in which the degrees of freedom S j = 1, 2, 3, . . . , q on each
lattice site take on q possible values, with the Ising model
corresponding to q = 2. The energy is −J0 when adjacent S j

share a common value, and zero otherwise. A considerable
literature exists concerning the Potts model, with many gener-
alizations, including multispin interactions, dilution, external
fields, etc. The physics of these is well explored, both ana-
lytically and numerically, in Ref. [12]. Relevant to the paper
presented here, the two-dimensional Potts model exhibits a
first-order phase transition when q > 4.

FIG. 1. The phase diagram of the p state clock model in two
dimensions. For p < 5, a single second-order transition separates
random high T and low T phases with true long-range order.
For p � 5, this critical point splits into two distinct Berezinskii-
Kosterlitz-Thouless (BKT) transitions, which enclose an extended
critical regime of power-law decay of correlation functions. The
XY model is recovered in the p → ∞ limit where the lower of the
two transitions Tc,2 → 0. Crucial to our paper is the presence of an
intermediate phase [13].

We add a term to the Potts model to describe a situation in
which the energy is also decreased by J1 if neighboring spins
S j differ by ±1. That is,

E = −J0

∑
〈i j〉

δSi,S j − J1

∑
〈i j〉

δSi,S j+1 − J1

∑
〈i j〉

δSi,S j−1. (2)

We denote by N = L2 the number of spatial sites of a lattice
with linear dimension L. It is reasonable to employ a periodic
boundary condition (PBC) in both the real dimensions as well
as the synthetic dimension. In this language, the additional
J1 term corresponds to a coupling favoring molecules on
neighboring sites having adjacent positions in the synthetic
dimension, such as is present in the V term of Eq. (1). In the
results which follow we set J0 = 1 as our energy scale.

For q = 3, Eq. (2) is the same as the q = 3 Potts model
with J0 → Jeff ≡ J0 − J1 (for J0 > J1). Thus our model would
share all Potts properties, including a second-order transition
at Tc = Jeff/ln(1 + √

3). This exact mapping is true only for
q = 3, but is nevertheless suggestive. We do not study the
small q limit further here, since, in extending the interactions
to include also δSi,S j+1 and δSi,S j−1, for small q the “range” (3)
becomes close to the “lattice size” q in the synthetic direction.

The clock model [13,14] is another well-known description
of classical phase transitions admitting a controllable discrete
set of values ni = 1, 2, 3, . . . , p on each site. It should be
noted that, as is the standard notation, the number of Potts
degrees of freedom is denoted by q, with p being used for the
clock model. The clock model energy is

E = −J0

∑
〈i j〉

cos

(
2π

p
(ni − n j )

)
. (3)

The clock model shows qualitatively different behavior at
different p values, as we will demonstrate happens in our
model as well. Figure 1 shows the phase diagram of the
clock model. Unlike the Ising and Potts models, which have
single critical points, the clock model for p > 4 exhibits
two distinct transition temperatures, between which there is
a Berezinskii-Kosterlitz-Thouless (BKT) phase. The higher-
temperature transition occurs at a critical temperature Tc,1 ∼
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J0, while the lower transition has Tc,2 ∼ O(1/p2), vanishing
in the XY limit p → ∞. These two distinct transitions occur
because the Zp breaking of the full continuous symmetry of
the XY model is irrelevant for temperatures above Tc,2 when
p > 4 [15,16]. As we will show in the sections below, Eq. (2)
exhibits similarity to the clock model in the sense of exhibiting
three phases, with an intermediate “sheet phase” separat-
ing the high-temperature disordered and low-temperature Zq

breaking phases.
To explore the statistical mechanics of Eq. (2) quantita-

tively, we will primarily use the simple classical single site
update Metropolis Monte Carlo method. We measure ob-
servables including the internal energy E , the specific heat
C = dE/dT , and the average synthetic distance D between
neighboring real-space sites, where

D ≡ 1

2N

∑
〈i, j〉

|Si − S j | . (4)

The summation runs over all neighboring sites i and j, and
|Si − S j | measures the distance of site i and j in the “synthetic
dimension.” The normalization is to the number of bonds 2N
on the square lattice. D is defined to loosely capture a tran-
sition into a “sheet” phase between a low-temperature phase
where all Si are identical and the high-temperature disor-
dered phase. We will define this sheet phase more precisely in
Sec. IV.

To characterize the phases further, we define

Pnn(d ) ≡ 1

2N

∑
〈i j〉

δ( d − |Si − S j | ) (5)

which measures the fractional likelihood that the synthetic
distance |Si − S j | between nearest-neighbor sites 〈i j〉 is ex-
actly d . D and Pnn(d ) are related by D = ∑

d d Pnn(d ).

III. MEAN-FIELD THEORY

The mean-field theory of the standard, many-state Potts
model can be found, for example, in [17]. The addition of a
second energy scale for next-nearest neighbors presents some
new features which we now consider. For ease of computation,
we assign the Potts spin at one site S an accompanying spin
variable λ(S) = ωS (S = 0, 1, . . . , q − 1). Here, ω = e2iπ/q is
the complex increment between spin variables. We then use
the identity

δS,S′±1 = 1

q

q∑
k=1

ωk(S−S′∓1) = 1

q

q∑
k=1

λ(S)kλ(S′)q−kω∓k (6)

which allows us to convert Kronecker delta functions in the
Potts model to products of spin variables and ω. Let us now
consider the interaction between only two sites in Eq. (2),
called ES,S′ . Using the aforementioned identity, ES,S′ becomes

ES,S′ = −1

q

q∑
k=1

[J0 + J1(ωk + ω−k )]λ(S)kλ(S′)q−k . (7)

We introduce the mean field by defining a set of q − 1 order
parameters, 〈λ(S′)k〉 = R ωkS′

[17]. Since interactions in the
Potts model are based on the relative spins between neigh-
boring sites, we turn our attention to S′ = 0 for convenience.

FIG. 2. Heat map of order parameter R, showing the mean-field
phase diagram of the generalized Potts model for q = 8. The value
of R serves as a measure of how aligned a spin is with the field via
R = Re(e2π i�S/q ), so a system with identical spins (ferromagnetic)
has R = 1. Likewise, if the spin differs from the field by a value
of ±1 (antiferromagnetic) for q = 8, then R = 0.707 as seen in the
diagram. In this and all subsequent figures, energies and temperatures
are in units of J0.

Replacing the spin variable λ(S′)q−k in Eq. (7) with order
parameter 〈λ(0)q−k〉 = R and fixing S′ leaves us with

ES = −nR

q

q∑
k=1

[J0ω
Sk + J1(ω(S+1)k + ω(S−1)k )], (8)

ES = −nR[J0δS,0 + J1(δS−1,0 + δS+1,0)] (9)

where n is the number of nearest-neighbor sites (n = 4 for a
square lattice). Taking the expectation value 〈λ〉 and setting it
equal to R, we arrive at the self-consistent equation

R = Tr(λe−βHS )

Tr(e−βHS )
=

(eβnJ0R − 1) + 2(eβnJ1R − 1) cos 2π
q

eβnJ0R + 2eβnJ1R + q − 3
(10)

which at J1 = 0 reduces to the self-consistent equation of the
standard Potts mean-field theory [17].

The resulting phase diagram with q = 8 is given in the heat
map of Fig. 2. The blue region shows the high-temperature,
disordered phase where the order parameter R = 0. For
J1/J0 < 1 there is the “conventional” low-T ferromagnetic
(FM) phase of the Potts model (bright green) where Potts
variables on different sites are identical. However, a second-
order phase appears (cool green) for J1/J0 > 1 in which
R = Re(e2π i/q ) = √

2/2 = 0.707 for q = 8. In this region, the
Potts variables on adjacent sites differ by ±1. We refer to this
as an “antiferromagnetic” (AFM) regime since adjacent spins
are forced to take distinct values. We will argue, based on the
approximation-free Monte Carlo solution in the next section,
in which we can take more sensitive “snapshots” of the spin
configuration, that an additional intermediate regime arises in
which the Potts variables on adjacent sites are either identical
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FIG. 3. Internal energy per site E (T )/N for q = 16 (a) and q =
8 (b) for different J1 (from bottom to top at T = 1.0 and J1 =
1.15, 0.8, 0.2, 0.0 respectively) and lattice sizes N = 8 × 8, 12 × 12,
and 16 × 16. Finite-size effects are minor, and E (T )/N appears
converged on the largest lattice.

or differ by ±1. In the heat map of Fig. 2, this behavior
is seen in the dark blue region that emerges for J1/J0 = 1,
where 0.707 < R < 1 as if the system was allowing for the
coexistence of nearest- and next-nearest-neighbor interactions
between ferromagnetic and antiferromagnetic ordering. The
critical point at J1/J0 = 0 is consistent with the analytic value
Tc = 12/(7 ln7) = 0.8810 for q = 8.

IV. E AND C FOR q = 8 AND 16

We turn now to present results obtained with Monte Carlo.
It is known for the pure clock model that q = 5 is a critical
value for the appearance of a BKT phase at intermediate tem-
perature, and that the phase diagram is qualitatively the same
for any q > 5, i.e., differing only in the range of temperature
over which the intermediate phase is stable, as seen in Fig. 1.
Similarly, we observe an intermediate regime that differs from
the ground-state behavior for q > 6 in our model as well. To
explore the novel intermediate region, we focus our paper on
just two values: q = 8 and 16. This choice also allows us to
gain some insight into quantitative changes with q without
excessive redundancy. We will demonstrate later that instead
of creating pairs of vortices as in the clock model, a sheet
is formed in the intermediate-temperature region when the J1

interaction is sufficiently strong.
We begin by showing the energy per site E (T )/N for

J1 = 0.0, 0.2, 0.8, 1.15 with q = 16 [Fig. 3(a)] and q = 8
[Fig. 3(b)]. For J1 < J0 = 1 the ground state has all the sites
taking the same spin value, and an energy per site E0/N =
−2J0. We will call this ground state the FM phase. For
J1 > J0 = 1, it is energetically favored to have adjacent sites

FIG. 4. Specific heat C(T ) (on a log scale) for q = 8 and 16 with
different choices of J1 (the curves whose intersections with the T
axis from left to right represent J1 = 0.8, 1.15, 0.2, 0.0 respectively)
and lattice sizes N = 8 × 8, 12 × 12, and 16 × 16. The dashed gray
lines denote analytic values for Tc for the Potts model (J1 = 0). The
behaviors of C(T ) for q = 16 (a) and q = 8 (b) are qualitatively the
same. The size of the heat-capacity peak is lower by over an order of
magnitude for J1 = 0.8 compared to J1 = 0.0, 0.2, a signature of the
change of order of transition from first to second.

with S j = Si ± 1 so that E0/N = −2J1 at T = 0. We call this
the AFM phase. In both panels, the known first-order transi-
tion at Tc = J0/ln(1 + √

q) of the conventional Potts model
(J1 = 0.0) is shown for comparison. This first-order character
remains evident at small J1, however, occurring at a (slightly)
reduced Tc. We interpret the lowering of Tc to arise from the
fact that J1 initially competes with the tendency of J0 to make
all values of Sj identical.

As J1 increases further, however, Tc begins to grow. Here
our picture is that the two interactions behave in a more coop-
erative way, raising the critical temperature. Notably, it can be
seen that when J1 is small, Tc predicted by mean-field theory
is slightly higher than that predicted by Monte Carlo data,
which is to be expected, as mean-field theory overestimates
Tc by neglecting fluctuations. Simultaneously, the evolution of
E (T ) becomes more gradual, suggesting a continuous phase
transition, or even a crossover. Studies on a finer mesh of J1

indicate the change of order of transition appears to coincide
with the value of J1 for which Tc is minimized. As can be
seen from the J1 = 0.8 curve, aside from the now-continuous
transition at T ≈ 0.7, a second feature emerges at T ≈ 0.2.
This is a first indication of the existence of an intermediate
regime.

The change from first-order character is further revealed in
the specific heat. Figure 4 gives C(T ) for the same sequence
of J1, again for q = 16 and 8. For J1 = 0.0, 0.2, the first-order
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FIG. 5. Temperature dependence of D for different J1 (the curves
from bottom to top at T = 1.0 represent J1 = 1.15, 0.8, 0.2, 0.0
respectively) and lattice sizes of 8 × 8, 12 × 12, and 16 × 16. For
J1 = 0.0 and 0.2, the first-order signature is evident. For J1 = 0.8 and
1.15, there exists an intermediate plateau that is evident for a sheet
phase between the ground state and the high-temperature disordered
phase.

discontinuity of E (T ) in the thermodynamic limit is signaled
by the very large value of the finite lattice derivative, exceed-
ing by more than an order of magnitude the peaks at J1 =
0.8, 1.15 where the transition is second order. Framed more
precisely, at a first-order transition the specific heat on a finite
lattice scales as the volume of the system, C(T ) ∼ N = L2,
whereas for a second-order transition C(T ) ∼ Lα/ν . Here α

and ν are the critical exponents for the specific heat and corre-
lation length respectively. As a consequence, the specific-heat
peaks are much smaller in the second-order region.

As noted already in the data for E (T ), Fig. 3, for J1 =
0.8, 1.15 an additional, lower-temperature, specific-heat peak
emerges. This suggests the existence of an intermediate
regime between the ordered phase at low temperature and
the disordered phase at high temperature. We shall focus our
discussion on the intermediate regime in the next section.
Given the qualitative similarity of the results for q = 8 and
16, in the next section we will restrict our analysis to the larger
value of q = 16.

V. SHEET FORMATION

We now turn to examining the nature of the intermediate
region, in which we believe a sheet forms, analogous to that of
the quantum model [11]. Figure 5 shows the average distance
D in synthetic dimension between nearest neighbors on the
lattice, as a function of T , for J1 = 0.0, 0.2, 0.8, and 1.15,
that is, horizontal sweeps of the phase diagram of Fig. 2. For
all J1 values, we see the D asymptote at high temperature
to D = q/4, which indicates a disordered phase where the
spins randomly (probability 1/q) and independently occupy
different synthetic position. (Note our use of the PBC in the
synthetic direction imposes a maximal value D = q/2.)

For J1 = 0.0 and 0.2, D increases from zero to the high-
temperature limit of q/4 through a direct jump, suggesting a
single first-order phase transition from the ordered phase to
the disordered phase, like the Potts model. However, for J1 =
0.8, D shows a plateau which coincides with the temperature

range between the two specific-heat peaks in Fig. 4. In this
region, J1 is sufficiently strong to allow neighboring spins Si

and S j to take on values S j = Si ± 1 in addition to S j = Si

favored by J0. The precise value of D depends on J1, which
will control the relative likelihood of Sj = Si ± 1 and Si. If
those cases are all equally probable, for example, then D ≈
2/3. We will refer to this as the sheet phase, because spatially
neighboring spins exist in a range of three adjacent values,
and, as we shall see, this persists to larger separations, so that
the configuration looks like a sheet in 2 + 1 dimensions. This
is to be distinguished from the ferromagnetic phase, where all
spins are identical.

For J1 = 1.15, the ground state is different. D = 1 at low
temperature is expected now since all the neighboring spins
favor taking values that differ by 1. This change of ground
state can be checked in the T = 0 limit of E in Fig. 3, which
takes on the value of E = −2J1 as expected. With increasing
T , neighboring spins in the system start to take on values that
are the same, thus the system enters the sheet regime, before
going into the disordered phase at high temperature, as was
the case with J1 = 0.8. That the intermediate-T regions of
J1 = 0.8 and 1.15 are of the same nature, and no transition
is between them, will be corroborated below.

The existence of the intermediate sheet region can be
qualitatively understood by looking at the system’s free en-
ergy. For J1 < 1, at very low but finite temperature, excited
states become accessible. The lowest-energy excitations are
the ones where one site takes a spin value that differs by 1
from its neighbors’. This costs an energy of �E = (J0 − J1).
Comparing to a Potts model with J = (J0 − J1), it is evident
that our model should retain its FM order for a range of
finite low temperatures, since all of its excitations cost more
energy than that of the Potts model’s, which is known to
have a FM ground state at low temperature. However, upon
increasing T , a manifold of excited states that we call the
“sheet state” will proliferate. The sheet state refers to a state
where all the neighboring spins take on spin values that are
either the same or differ by 1. Such states have extensive
energy �E ∝ (J0 − J1), and entropy per site �S = ln 3. The
latter can be understood by a counting similar to that of de-
generate ground states for J1 > 1, which is outlined in the
Appendix. This means sheet states will have a free-energy
contribution �F ∝ (J0 − J1) − T ln 3, which goes negative
at T � (J0 − J1)/ ln 3. We will show in the next paragraph
that the system makes a transition into a sheet-state regime
at a finite temperature for J1 � J1c ∼ 0.4 for q = 16. As we
continue to increase T , the system will go into a disordered
state as expected. We recall that it was also observed in E (T )
and C(T ) plots that at the same J1c where the sheet phase ap-
pears, the transition to the high-temperature disordered phase
becomes continuous. We argue that this is plausible as the
system in the sheet regime could have different symmetry
from its ground state. This also raises the question of whether
the transition from the ground state to the sheet regime is a
true phase transition. We will come back to this question when
discussing the phase diagram.

To support the existence of the sheet regime further, we
measure Pnn(|Si − S j |). In the lower panel of Fig. 6, we see
Pnn(0) ≈ 1 while both Pnn(1) and Pnn(2) ≈ 0 at low T for
J1 = 0.8. This tells us all the spins are taking the same value
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FIG. 6. Pnn(0), Pnn(1), and Pnn(2) vs temperature for J1 = 1.15
and 0.8. For both values of J1, Pnn(2) is the bottom curve, indicating
that adjacent sites rarely have synthetic distance of 2. Furthermore,
both plots show rapid changes near the specific-heat peaks, and an
intermediate phase in which, for neighboring sites, the synthetic
distance is allowed to be either 0 or 1, therefore supporting the
existence of the sheet phase.

as they should in the FM phase. As we increase T past the
temperature of the lower heat-capacity peak, Pnn(0) starts to
drop significantly, while Pnn(1) increases. Meanwhile Pnn(2)
is still very close to zero. This is to say, in this region, neigh-
boring spins are equally likely to take values that are identical
and off by 1, but they dislike taking values that are further
separated, the defining characteristic of the sheet phase, and
consistent with Fig. 5. As we increase T further, all the curves
go to the same limit, resembling the disordered phase where
all spin values are equally likely.

Similarly, in the upper panel of Fig. 6, the low-T limit of
J1 = 1.15 is showing a clear feature of the AFM phase. In the
intermediate-T region between the two heat-capacity peaks,
the decrease of Pnn(1) and the increase of Pnn(0) are both
significant, while Pnn(2) is kept at a low level. This is similar
to the behavior at J1 = 0.8. The difference is that here we are
coming to the sheet regime from an AFM phase instead of

a FM phase. This picture will be validated by the machine
learning method explained in the next section.

VI. MACHINE LEARNING APPROACHES

Both supervised and unsupervised machine learning al-
gorithms have been used recently to find critical points of
classical and quantum models of magnetism [18–24]. Many
of the most impressive applications of machine learning are
those using unsupervised algorithms, since no prior knowl-
edge of the phase diagram is needed. Recently, for example,
phase transitions of the q-state Potts model were analyzed
with a series of unsupervised techniques including prin-
cipal component analysis and k-means clustering, among
others [25]. While the results of these methods were cer-
tainly impressive, we now explore the use of an unsupervised
method known as the learning by confusion (LBC) approach,
which uses neural networks instead of dimensional reduc-
tion or clustering algorithms. This method is becoming very
widespread, and was even used to examine the q-state Potts
model in a recent study [26]. In this section, we outline the
LBC method and the details of our implementation, and sub-
sequently present our results.

The LBC algorithm, while being completely unsupervised,
can be thought of as a series of attempts at supervised
machine learning. Raw spin configurations generated from
Monte Carlo are used as input data, which are then purposely
given incorrect labels. In particular, “fake” critical points T ′

c
are postulated: for each, all configurations corresponding to
temperatures below T ′

c are given a label of zero, and those
above are given a label of 1. The data are then split into
training and testing data sets. A neural network is trained with
the labeled data, and the accuracy is computed against the test
data split. As each new T ′

c is chosen, the neural network is
retrained, and a new accuracy is then calculated.

The key observation is the following: When T ′
c is very large

(i.e., higher than all the temperatures sampled in the Monte
Carlo), all data, training and test, are labeled zero, and the
neural net can learn that trivial labeling with 100% accuracy.
The same is true for T ′

c very small. Likewise, when T ′
c arrives

at a value close to the true transition temperature, the neural
network will be able to classify most of the configurations cor-
rectly, yielding a very high accuracy. For other values of T ′

c ,
the neural network will fail to distinguish some configurations
from each other, resulting in comparatively low accuracies.
It follows, then, that the accuracy vs temperature plots will
have a “W ” shape, with the middle peak corresponding to the
correct Tc. In cases with two phase transitions, accuracy vs
temperature plots result in a double W shape, with the two
peaks corresponding to the two critical temperatures. This
process can also be done holding temperature constant, and
varying other degrees of freedom such as J1.

Although the LBC method has had major success in recent
years, it is important to note that, because we are using finite-
size lattices, it is possible that the accuracy peak corresponds
to a crossover rather than a true phase transition. While there
is work indicating that the shape of the peak corresponds
to the order of the phase transition [26], it is still certainly
possible that a peak corresponds to a crossover. As such, we
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FIG. 7. Output of the LBC method for q = 8, J1 = 0.8. Each
point on the plot corresponds to a different CNN for which the
accuracy a was evaluated after training. When near the true transition
temperature, the CNN is better able to classify the data into two
groups, resulting in higher accuracy. Peaks were found by removing
the leftmost and rightmost points and fitting a double Gaussian to the
remaining data. For these parameters, the LBC method was able to
find agreement with traditional methods to within a 6% difference.

turn to more traditional methods to more closely characterize
the nature of the LBC accuracy peaks.

Traditionally, the LBC method is used with a fully
connected neural network, which is expressive enough to
distinguish phase transitions in many cases [23,24]. In our
case, however, such neural networks performed quite poorly,
so convolutional neural networks (CNNs) were used instead,
which are much better at picking out subtle spatial information
from the data. It may be possible to get successful results
with fully connected neural networks, but more data or a more
complex training protocol may need to be used, slowing down
the algorithm dramatically. Figure 7 shows an example of the
LBC method using CNNs, illustrating congruent results with
traditional methods.

We tested the LBC approach on data generated from Monte
Carlo simulations using q = 8, as it is sufficiently high for the
existence of the sheet regime, but moving to larger-q values
would increase the time for computation, as explained in the
Appendix. We also tested the LBC scheme at many different
values of J1 to get more comprehensive results. As expected,
LBC peaks and specific-heat peaks were in strong agreement,
both in cases with and without the sheet regime. Figure 8
shows the resulting phase diagram generated from many
runs similar to that of Fig. 7. In addition to sweeps across
temperature, we also present multiple runs holding tempera-
ture constant, and sweeping across J1 to further validate our
results.

The use of the LBC approach applied to this model is not to
claim superiority over traditional methods such as C(T) peaks,
but rather to highlight its application to a specific problem in
which the phase diagram was unknown. By benchmarking the
LBC method in this way, we aim to show its effectiveness

and reliability. The ultimate goal is to help expand the toolkit
available for dealing with novel or poorly understood systems.
In this way, we hope to underscore the potential of the LBC
approach to provide insights, which will become useful in
areas where more traditional methods might face challenges.

VII. PHASE DIAGRAM

Based on the analysis in the above sections, we present in
Fig. 8 the phase diagrams of our model for q = 8 and 16, as
well as snapshots of states in each of the phases. As we found
in Sec. IV, q = 8 and 16 have qualitatively the same behavior,
which is confirmed in panels (a) and (d). While there are slight
differences in the specific transition temperatures, both phase
diagrams have very similar structures. Lower-q values such
as q = 4, however, are likely to yield much different phase
diagrams, as is the case in the q state clock model [13].

At sufficiently low T , the system stays at its FM or AFM
ground states for J1 < 1 and J1 > 1 respectively, snapshots of
which are also shown in Fig. 8. In the FM phase, all spins line
up, whereas in the AFM phase, spins deviates by exactly one
spin value from that of its neighbor’s, rendering a fluctuating-
looking snapshot.

Below a critical value of J1c (J1c ∼ 0.4 for q = 16 and
J1c ∼ 0.5 for q = 8), the system acts like a Potts model, which
transitions into the disordered phase through a first-order
phase transition, as indicated by the blue line in the phase
diagram. Increasing J1 only slightly lowers Tc, which can be
understood since J1 makes it harder for the system to develop
ferromagnetic order.

Above the critical value of J1c, as we increase T , the system
develops a sheet regime, before a phase transition into the
disordered phase. A snapshot of the sheet regime is shown,
where neighboring spins are able to take the same value as
well as off-by-1 values. For this reason, if we treat the spin
values as a synthetic dimension, we will see a sheet in the
two spatial + one synthetic dimension. For J1 < 1, the smooth
transition in E (T ) in Fig. 3 and the size independence of the
peak in C(T ) in Fig. 4 indicate that the boundary between the
FM and sheet region is either a crossover or a BKT transition.
Similar size independence of heat capacity is observed in the
XY model as well [27]. This is marked as a dashed magenta
boundary in the phase diagrams. For J1 > 1, the transition
from the AFM to the sheet region looks continuous as well
if we look at the E (T ) plot in Fig. 3. However, we believe it
is likely a second-order phase transition as Fig. 4 shows clear
size dependence of the heat-capacity peak for J1 = 1.15, as
opposed to J1 = 0.8. Furthermore, the FM and AFM phases
are distinct, in that there should be a phase transition di-
viding the two regions. This provides further evidence that
the boundary from the AFM phase to the sheet regime is a
phase transition as opposed to a crossover. We have marked
the phase boundary pink to differentiate from the first-order
transition happening between the FM and sheet phase.

Finally for all J1 > J1c, the system will eventually tran-
sition to a disordered phase through a second-order phase
transition, indicated by the green boundary in the phase dia-
gram. We are able to corroborate this claim while locating the
transition temperature more accurately by using the Binder
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FIG. 8. Panel (a) shows the phase diagram for our model for q = 16, featuring a comparison of specific heat, Pnn(1), and D. Since the phase
boundaries correspond to the temperatures in which Pnn(1) and D change most rapidly, points associated with these quantities were found by
locating the extrema of the derivatives d

dT [Pnn(1)] and d
dT (D). For small J1 there is a single first-order transition to a ferromagnetic phase (all

spin variables identical). For intermediate 0.6 � J1 � 1.7 two distinct transitions occur. The low-temperature boundary is likely a crossover for
J1 < 1 (dashed magenta boundary) and a continuous phase transition for J1 > 1 (solid magenta boundary). The higher-temperature boundary is
likely a continuous phase transition as well (green boundary). The intermediate regime is characterized as a sheet region where the neighboring
sites have spin variables differing by ±1. Panel (d) shows a similar phase diagram for q = 8, comparing specific-heat peaks to LBC peaks. The
remaining panels show snapshots of the four states in the phase diagram, all for q = 16. Panel (b) shows a snapshot of the antiferromagnetic
phase in which nearest-neighbor sites are required to exhibit Sj = Si ± 1, and (c) shows that of the sheet regime. Panel (e) shows a snapshot of
the ferromagnetic phase, and (f) displays that of the disordered phase.

ratio 〈M4〉
〈M2〉2 . Here M is defined as M = 1

N

∑
j e

2πS j i

q . It can
be seen from Fig. 9 that the positions of the corresponding

FIG. 9. Binder ratio 〈M4〉
〈M2〉2 for L = 8, 12, 16. Crossing points are

seen for J1 = 0.8 and 1.15. Heat-capacity peak positions for the
same J1 values are plotted as vertical dashed lines for comparison,
in good agreement with the crossing point of the Binder ratio. A
slight deviation is expected as a consequence of finite-size effects
for heat-capacity peaks.

heat-capacity peaks are very close to the critical temperatures
indicated by the Binder ratio crossing points. However, we
should mention that the Binder ratio fails to capture other
phase boundaries, thus we are not showing the Binder ratio
in a broader temperature range here.

VIII. CONCLUSIONS

In this paper we have explored the phase diagram of a
variant of the Potts model in which the energy is lowered
not only when the degrees of freedom Si = 1, 2, . . . , q on
adjacent spatial sites are identical, but where there is an ad-
ditional energy lowering when they differ by ±1, that is when
Sj = Si ± 1. Such a situation mimics that of experiments with
ultracold dipolar particles in synthetic dimensions, for ex-
ample ultracold polar molecules in an optical trap in which
each molecule has a ladder of possible rotational states with
z component of the angular momentum mi of molecule i, and
intermolecular dipole interactions favor mj = mi ± 1.

Although a precise connection between the two models is
limited by the absence of quantum fluctuations in our classical
analog, our results reveal several interesting qualitative links.
In particular, we observe the emergence of a low-temperature
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sheet regime which is very similar to one of the defining
characteristics of the molecular system.

Prior studies [28] of the three state Potts model have
considered the effect of the range of the interaction V (r) ∼
1/r1+σ on the order of the transition, finding first-order char-
acter for σ � 0.7. The context was that of a lattice with one
(physical) dimension and long-range (power-law decaying)
interactions. Our specific perspective here has been to formu-
late a classical model which serves as an analog of quantum
models of sheet formation in synthetic dimension. Our paper,
which incorporates an energy which is lowered when adjacent
sites (in two “physical” dimensions) have variables which
are identical (the usual Potts model) or differ by ±1 (our
extension), can be interpreted as a similar extension of the
“range” of the interaction, but only in the third “synthetic”
direction.

Finally, we emphasize that determination of the phase di-
agrams of such models poses an interesting new challenge
to machine learning and related information-theoretic [29,30]
approaches being developed for statistical mechanics. We
have shown here that learning by confusion [23,24] provides
a powerful and accurate means to gain insight, and, signif-
icantly, that it is able to capture a “double-W ” structure of
the accuracy which might be expected in the presence of two
successive finite-temperature transitions.
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APPENDIX: CLASSICAL ANALOG OF QUANTUM
MODELS IN SYNTHETIC DIMENSION

In this Appendix we consider details which provide ad-
ditional insight into the model of Eq. (2) including (1) an
evaluation of the ground-state entropy, which we show to be
extensive, and (2) details of the machine learning approach.

1. Macroscopic ground-state entropy

When J0 is dominant, there is a q-fold degenerate ground
state consisting of all sites sharing a common spin value.
However, this degeneracy is “small” in the sense that the
entropy per site s(T = 0) = ln q

N vanishes in the thermody-
namic limit (i.e., fixed q and large number of spatial sites
N). One of the significant effects of J1 is to introduce a
macroscopic ground-state degeneracy so that the associated
low-temperature entropy per site is nonzero. In particular, for
J1 � J0 on each bond 〈i j〉 the value of S j which minimizes the
energy is not uniquely determined by Si, resulting in nonvan-
ishing ground-state entropy. Here we consider such entropy
for a one-dimensional chain of sites, focusing on the case

J1 = J0 when, on each bond, there are three choices S j =
Si, Si ± 1 which have equivalent energy. There is, however,
a choice of boundary conditions in the synthetic dimension;
we begin our analysis with periodic boundary conditions,
followed by a discussion of open boundary conditions, which
is easier to achieve in experiments.

With periodic boundary conditions in the synthetic di-
mension, the entropy for a one-dimensional chain is easy to
analyze analytically. We start with J1 = J0, looking at a single
site, which can take q different values. To keep the system
in its ground state, all of its neighboring sites can each only
take three different values: identical, one more, or one less. As
more and more sites are considered, it becomes clear that each
site—other than the first—can only take three different values.
As such, in the limit as the number of sites goes to infinity, the
degeneracy, and therefore entropy, can be written as

� = lim
N→∞

q × 3N−1,

lim
N→∞

S

N
= lim

N→∞
ln �

N
= ln 3.

For J1 > J0, a similar argument can be made, except each
site is constrained only to take two possible values rather than
three. Accordingly, in the limit as the number of sites goes to
infinity, the entropy per site is found to be ln 2.

We now turn our attention to open boundary conditions in
the synthetic dimension, which is substantially more difficult
to analyze. Rather than calculating analytic expressions for
the entropy, we establish lower and upper bounds, followed
by computationally calculated approximations to check our
results, all still for a one-dimensional chain of sites. Starting
with J1 = J0, one can use an analogous argument to the pre-
vious entropy calculations. With open boundary conditions,
however, sites are constrained to take a maximum of three
different values rather than strictly three different values. It
is certainly possible that a site is constrained such that it can
only take two or even one possible value (such as when the
value of a neighboring site is 1 or q). Accordingly, in the limit
as the number of sites goes to infinity, an upper bound to the
ground-state entropy per site is ln 3.

Still considering J1 = J0, to derive a lower bound we imag-
ine a lattice in which every second site takes the same value.
Given that q > 2 so that this value can be neither the maxi-
mum nor the minimum (1 or q), then each of the remaining
sites is constrained to be either that same value, one more, or
one less, resulting in a total of three different possibilities for
each site. In the limit as the number of sites goes to infinity,
the total number of microstates under this constraint and the
ground state entropy per site can then be written as

� ∼ lim
N→∞

3N/2,

lim
N→∞

S

N
= lim

N→∞
ln �

N
= ln 3

2
.

Since there are certainly other possible microstates, this is a
lower bound for the ground-state entropy per site. These upper
and lower bounds hold in one dimension for any system size,
and also for any q < ∞. Similar arguments can be made for
J1 > J0, resulting in lower and upper bounds of ln 2

2 and ln 2
respectively.
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FIG. 10. Ground-state entropy per site in one dimension for dif-
ferent q values where N is the number of sites in the chain. In both
plots, q = 4 is the bottom curve, followed by q = 8 and 12, finally
with q = 16 on top. As N increases, the entropy decreases, and all
will eventually cross below the upper bound. Larger q values result
in larger entropy, as expected.

As mentioned previously, computational approximations
for the ground-state entropy are also calculated in one di-
mension for J1 = J0 and J1 > J0. An algorithm was created
using Pascal’s triangle argument to count the number of
microstates—and therefore entropy—for different chain sizes
and q values. This algorithm can best be understood by rep-
resenting the one-dimensional chain with a two-dimensional
grid of width N and height q, where the horizontal axis rep-
resents the position in the chain, and the vertical axis is the
spin value of that particular site. For J1 = J0, the number of
ground states is exactly given by the number of ways to travel
from the left side to the right side of the grid while only
making moves directly to the right, diagonally up or right, or
diagonally down or right. Given periodic boundary conditions
in the real dimension, the only other constraint is that there
must be at most a one value difference between the starting

and ending height positions on the grid. For the J1 > J0 case,
the same argument can be made, but only diagonal moves are
allowed, and the ending height must be exactly one above or
below the starting height. These types of questions, commonly
known as pathway problems, are easily solved by creating
an augmented Pascal’s triangle starting from the far left of
the grid, and propagating to the right by summing previous
values along all available paths. Results are shown in Fig. 10.
The best approximations are consistent with the previously
established bounds.

2. Details of the machine learning approach

As mentioned previously, we used the LBC method with
CNNs. In particular, our CNNs consisted of three separate
convolution layers in parallel with filter sizes 3 × 3, 5 × 5,
and 7 × 7. After raw Monte Carlo configurations are put
through each of these convolution layers, the outputs are then
concatenated back into a single tensor, where the number
of neurons is equal to the total number in the concatenated
output of the CNNs. This tensor is then put through two fully
connected layers with ReLU activation and 512 hidden neu-
rons, finally running the two output neurons through softmax
to classify the configuration into one of the two classes. A
dropout probability of 0.1 was used in the fully connected
layers to avoid overfitting.

Before each training trial, our data were split into training
(42.5% of the data), testing (42.5% of the data), and validation
(15% of the data) splits. The CNN is then trained using the
training data split with Adam optimization, and cross-entropy
loss on the validation split. Training ends once the validation
loss stops decreasing for five epochs, which is done to avoid
overfitting. The initial value of the learning rate is 0.001 and
is updated with PYTORCH’s REDUCELRONPLATEAU learning
rate scheduler, which multiplies the learning rate by a factor
of 0.1 with a patience of 3. Accuracy is then calculated with
the test data split, which is recorded so it can later be plotted.

Our data sets consisted of n independent configurations at
t different temperatures, resulting in nt total configurations.
When temperatures are sufficiently low, however, the sam-
pling is not ergodic and the simulation spends a very long
time in one of the degenerate ordered states. To address this,
“spatially translated” data were created as follows: From each
“real” configuration, q − 1 “translated” configurations were
generated by increasing the spin value on each site: Si →
Si + 1, with the PBC imposed such that Si = q → Si = 1.
This corresponds to moving the configuration in the synthetic
dimension. Likewise all spatial sites are also translated a
random amount i → i + 
δ in the two real dimensions. These
two steps were performed q − 1 times, resulting in q differ-
ent configurations with the same energy as the original. The
final data set consists of qnt total configurations. Accordingly,
higher q values result in larger amounts of translated data, thus
increasing computation time.
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