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Abstract. Ground state counting plays an important role in several applications

in science and engineering, from estimating residual entropy in physical systems, to

bounding engineering reliability and solving combinatorial counting problems. While

quantum algorithms such as adiabatic quantum optimization (AQO) and quantum

approximate optimization (QAOA) can minimize Hamiltonians, they are inadequate

for counting ground states. We modify AQO and QAOA to count the ground states of

arbitrary classical spin Hamiltonians, including counting ground states with arbitrary

nonnegative weights attached to them. As a concrete example, we show how our

method can be used to count the weighted fraction of edge covers on graphs, with

user-specified confidence on the relative error of the weighted count, in the asymptotic

limit of large graphs. We find the asymptotic computational time complexity of our

algorithms, via analytical predictions for AQO and numerical calculations for QAOA,

and compare with the classical optimal Monte Carlo algorithm (OMCS), as well as

a modified Grover’s algorithm. We show that for large problem instances with small

weights on the ground states, AQO does not have a quantum speedup over OMCS for

a fixed error and confidence, but QAOA has a sub-quadratic speedup on a broad class

of numerically simulated problems. Our work is an important step in approaching

general ground-state counting problems beyond those that can be solved with Grover’s

algorithm. It offers algorithms that can employ noisy intermediate-scale quantum

devices for solving ground state counting problems on small instances, which can help

in identifying more problem classes with quantum speedups.

Keywords: Quantum algorithms, Adiabatic quantum optimization, Quantum

approximate optimization, Constrained sampling and counting, Edge covers,

Engineering reliability.
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1. Introduction

Counting ground states of classical spin Hamiltonians (or equivalently, global minima

of functions of binary variables) is a computationally difficult problem that finds wide

applications in science and engineering. Many problems of practical importance, such as

probabilistic reasoning and Bayesian inference [1–6], determining the reliability of graph

flows for energy, information, and mechanical structures [7,8], membership filters [9–12],

and performing data-driven diagnosis [13], rely on counting minima of cost functions

which encode relevant constraints. In physical systems, ground state degeneracy arises

from geometric frustration [14], glassy physics [15, 16], and novel ordering [17,18].

Adiabatic quantum optimization (AQO) [19, 20] and, more recently, a hybrid

classical-quantum variational algorithm called quantum approximate optimization

(QAOA) [21,22], are two algorithms widely used [23–63] to minimize spin Hamiltonians,

including several that solve hard optimization problems in science and engineering.

Excitingly, QAOA has the potential to be implemented on current noisy intermediate-

scale quantum (NISQ) devices [45–47].

However, despite their promise of finding a ground state of these Hamiltonians,

AQO and QAOA are inefficient for counting their ground states [64–71], when

implemented in their usual form with a transverse field as the mixing Hamiltonian.

This is because they result in a final wave function with a small or zero weight on a

significant number of the classical ground states. Adaptations of AQO and QAOA that

solve counting problems must ensure that the amplitudes of the final wave function in

these algorithms sample all the classical ground states with sufficient probability.

In this work, we modify AQO and QAOA to count ground states of arbitrary

classical spin Hamiltonians. Our work is inspired by ideas in Refs. [71–74] to

fairly sample ground states, which are in turn inspired by Grover’s algorithm [75].

Additionally, we extend these algorithms to count ground states with arbitrary weights

attached to them, by designing the algorithms such that the final wave function

importance-samples the ground states with probabilities given by their weights.

We demonstrate our algorithms by applying them to count weighted edge covers on

graphs. This is directly related to calculating the edge cover polynomial of a graph [76],

and has applications in reliability engineering [7, 77]. We compare the performance

of our algorithms versus optimal Monte Carlo simulation (OMCS) [78, 79], which is a

widely used classical method to numerically simulate engineering problems, that a priori

provides confidence on the relative error of the expectations of random variables with

minimal assumptions.

The main results presented in this article, shown in Fig. 1 and in Table 1 with

relevant notations defined in Secs. 2 and 3, are as follows: (1) We show that the wave

function in our algorithms, at any time during their execution, has amplitudes that

importance-sample the ground states of a classical Hamiltonian, and (2) We analyze the

asymptotic scaling of the time required by these algorithms to estimate the weighted

count of the ground states, analytically in the case of AQO with an arbitrary classical
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Hamiltonian, and numerically in the case of QAOA to count edge covers. We find that

(a) AQO with a linear schedule is slower than OMCS for a given relative error and

confidence, but (b) QAOA can have a speedup over classical OMCS when the total

weight on the ground states is small. The speedup is sub-quadratic, and assumes that

the variational search in QAOA can be done with negligible computational cost.

There are other quantum algorithms that can also count ground states of

some Hamiltonians, such as the quantum amplitude estimation algorithm and its

variants [80–82], and counting by sampling from the final wave function in a quantum

algorithm [72, 83]. All of these rely on being able to implement Grover’s oracle on a

quantum circuit. Then, these algorithms can have a speedup over classical algorithms

only if the classical Hamiltonians considered encode problems for which it is possible

to verify if a given state is a solution to the problem in polynomial time, i.e., problems

lying in the computational complexity class NP. Our algorithm is more general—it

can be used to count weighted ground states of arbitrary Hamiltonians. Moreover,

one of the techniques that we present, QAOA, has recently shown significant promise

for implementation on NISQ devices and rapidly finding ground states. While we

only observe a sub-quadratic speedup in our QAOA algorithm, further research might

improve this speedup.

This article is organized as follows. In Sec. 2, we define the ground-state counting

problem we consider, and give a concrete example. In Secs. 3.1–3.3, we describe modified

quantum algorithms—Grover, AQO, and QAOA—for importance-sampling the ground

states of the classical Hamiltonian. We calculate the scaling of the computational time

for these algorithms, analytically in the case of AQO and Grover, and numerically in

the case of QAOA. In Sec. 3.4, we describe a procedure to estimate the weighted count

of ground states by iterating the experiment several times. In Sec. 4, we numerically

compare the scaling of the total computational time required by our QAOA algorithm

against classical OMCS, and show cases where QAOA scales more favorably with system

size than OMCS. We summarize and provide a future outlook in Sec. 5.

2. Problem: Counting ground states of a classical Hamiltonian

The problem we consider in this work is estimating the total weighted count of ground

states |g〉 of a classical Hamiltonian Ĥz acting on a Hilbert space H, with a nonnegative

normalized weight function w : H → [0, 1], where
∑

φ∈Hw(φ) = 1 with the sum running

over the classical basis states of H. The Hamiltonian can be general, with interactions

between arbitrary numbers of spins,

Ĥz =
∑

s∈P (1,···,n)

Js
∏

j∈s

σ̂zj , (1)

where P (1, · · · , n) is the powerset of {1, · · · , n}, and Js are arbitrary real numbers.

We denote the distinct eigenvalues of Ĥz as Ej, where 0 ≤ j ≤ m − 1, and let

E0 < E1 < · · · Em−1. Each eigenvalue can have degenerate eigenstates. We define



A quantum algorithm to count weighted ground states of classical spin Hamiltonians 4

QAOA
OMCS

(a) (b)

(d)(c)

1 edge cover

1 edge cover

3 edge covers

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

t/T

|<
g|
ψ
(t)

>
2

…

……

q = sin2(0.4⇡) q = sin2(0.35⇡)

QAOA
OMCS

QAOA
OMCS

●●
●●

●●●
●●●

●●●
●●●●

●●●●
●●

■■■
■■■

■■■
■■■

5 10 15 20 25 30 35

0.1

100

105

|E|

to
ta
lt
im
e(
ar
b.
)

●
●

●
●

● ● ●
●

■ ■ ■ ■ ■ ■ ■

0 5 10 15 20 25 30 35
0.1

10

1000

105

|E|

to
ta
lt
im
e(
ar
b.
)

●
●

●
●

●
●

●
●

■
■

■
■

0 5 10 15 20 25 30 35

1

100

104
106

|E|

to
ta
lt
im
e(
ar
b.
)

Figure 1. (Color online) Importance-sampling of ground states in AQO, and the

scaling of total computational time for QAOA and OMCS. (a) Demonstration that

the instantaneous wave function in AQO importance-samples the ground states of

Ĥz in Eq. (4). Solid lines plot |〈g|ψ(t)〉|2, for all the ground states of Ĥz encoding

the edge cover problem for the paw graph—shown in the panel and described in

Fig. 2 and Sec. 2.1. Dashed lines plot |〈g|ψ(t)〉|2/〈ψ(t)|P̂G |ψ(t)〉, where P̂G is the

projection operator onto the ground state space G of Ĥz. The paw graph has five

degenerate ground states for Ĥz, with one state having weight w = q2(1 − q)2, three

with w = q(1 − q)3 (whose solid curves as well as dashed curves overlap), and one

with w = (1 − q)4. The overlapping solid curves and the flat dashed curves all

illustrate that the wave function importance-samples the ground states at all times,

i.e., |〈g|ψ(t)〉|2 ∝ w(g). (b)-(d) Scaling of the total computational time taken by

QAOA (blue circles) vs. OMCS (red squares) to estimate the weighted count P of

edge covers for the graphs shown in the respective panels and q above the panels,

with probability 1 − δ = 0.95 of having the relative error less than ε = 0.05. The

“total time” plotted for OMCS is the physical CPU time in seconds, while the “time”

for QAOA is the total number of one-qubit gates and CNOTs in repeated iterations

of the optimal QAOA circuit found by greedy variational optimization described in

Sec. 3.3, multiplied by a constant factor to lie on the same scale as OMCS. In all

these cases, QAOA is asymptotically faster than OMCS, as seen by extrapolating the

results to large |E| (solid lines). The plots do not include the time Tαβ search to find

the variational parameters in QAOA.

moments, N
(µ)
j , for the different manifolds as

N
(µ)
j =

∑

φ:Hz(φ)=Ej

(w(φ))µ. (2)

For notational convenience, we denote ground state moments, N
(µ)
0 , as Pµ.

The quantity we want to estimate—the total weighted count of the classical ground
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Algorithm
Number of steps to

reach ground states

Number of measurements

to estimate P Source

Classical Optimal

Monte Carlo(OMCS)
1
P

| ln(δ)|
ε2

[78]

Adiabatic quantum

optimization (AQO)
TAQO/dt ∼ 1

ηP Tcount =

√
| ln(δ)|

ε(1−η2)

√
P2

P2
this paper

Quantum approximate

optimization (QAOA)
TQAOA ∼ sin−1

√
1−η2√
P Tcount =

√
| ln(δ)|

ε(1−η2)

√
P2

P2
this paper

Grover’s algorithm TGrover ∼ sin−1
√

1−η2

2
√
P Tcount =

√
| ln(δ)|

ε(1−η2)

√
P2

P2
[84] + this paper

Table 1. Scaling of the number of operations required by different algorithms to

estimate the weighted ground state count P for a classical Hamiltonian Ĥz, with

maximum relative error ε and confidence 1 − δ in the limit ε, δ → 0 [see Eq. (6)].

Second column: Number of random samples drawn to find a ground state in OMCS,

and the number of calls to Ĥx and Ĥz in AQO and QAOA, and oracle calls in Grover’s

algorithm, to reach ground state occupation 〈ψ(T )|P̂G |ψ(T )〉 = 1− η2. Third column:

Number of measurements made until the statistical analysis yields P with relative error

ε and confidence 1− δ. For OMCS, this column refers to the number of ground states

measured. P2 is the sum of squares of the ground state weights [see Eq. (2)]. The

total time in all these algorithms scales as the product of the second column, the third

column, and the time required to implement one step of the second column (e.g., draw

one random sample in OMCS and verify if its a ground state). The scaling quoted

for QAOA is found numerically, and does not include the time Tαβ search to find the

variational parameters in QAOA. The total computational time has additional factors

not listed here, many of them varying polynomially with the number of qubits and

discussed in Sec. 3.

states |g〉 in the ground state space G of Ĥz—is

P ≡ P1 =
∑

g∈G

w(g). (3)

2.1. An application: Edge covers

As a concrete example of Ĥz, we consider counting edge covers on a graph, which is a

local constraint-satisfaction problem. For a graph with vertices v ∈ V and links e ∈ E,

a subset E ′ ⊆ E is said to be an edge cover if E ′ has at least one link incident on every

vertex in V . Figure 2(a) illustrates some examples of edge covers and non-edge covers

on the “paw” graph, also known as the 3-pan graph or the (3,1)-tadpole. The weighted

count of edge covers is an upper-bound for the graph’s all-terminal reliability [7, 77],

which determines the probability that a graph stays connected when its links fail with

a given probability. Efficiently calculating the all-terminal reliability has applications

in designing reliable engineering systems [85].

To recast counting weighted edge covers as a ground-state counting problem, we

map each link to a qubit, and define a one-to-one map between every subset E ′ and

a state in a Hilbert space with |E| bits. Every link in E ′ is mapped to |0〉, and every
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link not in E ′ is |1〉. Then, the set of edge covers forms a one-to-one mapping with the

ground state space G of

Ĥz =
∑

v∈V

∏

e∈E(v)

1− σ̂ze
2

, (4)

where E(v) is the set of links e incident on v, and σ̂z = |0〉〈0| − |1〉〈1|. For each node

v, the product
∏

e∈E(v)
1−σ̂z

e

2
is zero if any of the links incident on v is |0〉 (i.e., present

in E ′), and is one if all the links incident on v are |1〉 (i.e., none are present in E ′).

Therefore, the total energy of a classical state |E ′〉 corresponding to a subset E ′ is equal

to the number of nodes v not incident to any links in E ′. The energy of all edge covers

is 0, and they form a one-to-one map with the ground states of Ĥz. The eigenvalues of

Ĥz for this problem are integers, Ej = j for 0 ≤ j ≤ |V | − 2, and E|V |−1 = |V |.
For this problem, we consider the weight on any state |E ′〉 = |e1 · · · e|E|〉 to be

w(E ′) = qn1(1− q)n0 (5)

where ei ∈ {0, 1}, q ∈ [0, 1], and n1 and n0 are the number of 1s and 0s in E ′. This

weight naturally occurs in engineering applications where links fail independently with

probability q.

Classical Monte Carlo algorithms give an estimate Pest for the desired result P by

importance-sampling the space of all link configurations (i.e., the powerset of E) with

the probability distribution w(E ′). Improved algorithms such as OMCS also provide a

confidence 1− δ on the relative error ε, defined as

1− δ ≡ Pr

(∣∣∣∣1−
Pest

P

∣∣∣∣ < ε

)
. (6)

When ε, δ � 1, the number of samples drawn in OMCS to estimate P scales as [78]

TOMCS ∼ | ln(δ)|/(Pε2). (7)

3. Methods: Algorithms for importance-sampling and counting

Our quantum algorithm to estimate P has two parts. In the first part, we coherently

evolve the quantum system to a target wave function in the ground state space G and

measure the system in the computational basis (Sec. 3.1–3.3). In the second part of the

algorithm, we iterate the first part several times, and do a classical statistical analysis

on the measurements to estimate P (Sec. 3.4). The natural choice for a target wave

function to count ground states |g〉 with weights w(g) samples a ground state |g〉 with

relative probability w(g). This criterion is met by the choice

|ψtarget〉 =
1√
P
∑

g∈G

√
w(g)|g〉, (8)

where 1/
√
P is a normalization factor.

Although AQO and QAOA can often find the ground state space of a Hamiltonian

faster than classical algorithms, they are unsuitable for reaching a pre-determined target
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Figure 2. Examples of edge covers and non-edge-covers, and the spectrum of

Ĥ(α/β, 1) = (α/β)Ĥx + Ĥz , for the paw graph. The Hamiltonians Ĥz and Ĥx

are defined in Eqs. (4) and (11). (a) The top two panels show examples where the set

of thick blue links (denoted E′ in the text) are not edge covers, and bottom panels

show examples that are edge covers. For illustration, vertices incident to links in E′

are shaded blue; E′ is an edge cover if all vertices are shaded. Out of the sixteen

subsets on this graph, five are edge covers and ground states of Eq. (4), with thick

links mapped to |0〉 and thin links mapped to |1〉. (b) Spectrum of Ĥ(α/β, 1) for the

paw graph. The flat red lines are the energies for the antisymmetric eigenstates of Ĥ,

and solid black lines are the energies for the symmetric eigenstates at q = sin2(0.4π).

The minimum value of the difference between the two lowest black lines determines

the evolution time TAQO in AQO [Eqs. (13) and (26)].

wave function such as Eq. (8) in a degenerate space, when used with the usual mixing

Hamiltonian Ĥx = −∑n
i=1 σ̂

x
i , and are therefore inefficient for counting ground states.

For example, in the adiabatic limit of AQO, the final wave function is given by degenerate

perturbation theory with Ĥx as the perturbing term, and this wave function is not known

a priori. In fact, several works [64–71] have numerically found that some ground states

|g〉 are exponentially suppressed in the final wave function relative to other ground

states |g′〉, so that |〈ψ(T )|g〉| � |〈ψ(T )|g′〉|. Finding the exponentially suppressed

ground states by measuring the final wave function will require exponentially many

experiments, and therefore, it becomes inefficient to count all the ground states. In

QAOA, the distribution of classical ground states in the final wave function depends

on the variational parameters used to evolve the system, and it is difficult to obtain

confidence on estimates of the weighted count.

In this section, we solve the difficulties described above in using AQO and QAOA

to count ground states of Hamiltonians. Specifically, we (i) modify AQO and QAOA to

guarantee that the instantaneous wave function’s amplitudes in the computational basis

importance-sample the ground states, i.e., |〈ψ(t)|g〉|2 ∝ w(g), (ii) describe a statistical

technique to count the ground states with weights w(g), with a user-specified relative

error and confidence, in the asymptotic limit of large system size, and (iii) analyze the

asymptotic scaling of the computational time with problem size. Remarkably, besides

enabling efficient counting, our modifications also allow us to analytically predict the

asymptotic scaling of AQO.

Our modifications build on ideas proposed in Refs. [71–74], but our results are
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more general. Most importantly, while Refs. [72–74] analyzed AQO only for a restricted

Hamiltonian Ĥz = 1−∑g∈G |g〉〈g| (i.e., eiπĤz is a Grover oracle), our analytical results

for AQO hold for arbitrary classical Ĥz, even those not easily implementable as Grover

oracles. In this way, our work also opens avenues to solve counting problems that cannot

be approached by the usual counting algorithms such as amplitude estimation [80–82].

Furthermore, while Ref. [71] did not explicitly prove that their ideas lead to exactly

fair sampling, we prove it, and we extend those ideas to importance-sampling. Our

modifications still have close connections to Grover’s algorithm, despite solving a larger

class of problems, and therefore we will also briefly present the version of Grover’s

algorithm for weighted counting in Sec. 3.1.

Our algorithms involve a few time scales. We denote the number of calls to Ĥx and

Ĥz required to coherently evolve the system to G in one iteration of AQO and QAOA

as TAQO and TQAOA, and the number of oracle calls in Grover’s algorithm as TGrover.

Additionally, there is some overhead, Tαβ search, for finding the variational parameters

in QAOA. We give a rigorous statistical approach in Sec. 3.4 to estimate Pest with

user-specified confidence on its relative error from the actual value P , in the asymptotic

limit of system size. We denote the number of iterations required for this statistical

analysis as Tcount. The total times for the three algorithms then scale as TAQO × Tcount,
Tαβ search + TQAOA × Tcount, and TGrover × Tcount. There are some overheads to this total

time. For example, one source of a multiplicative overhead is the circuit to implement

one discrete step of the quantum evolution in the first part of the algorithm. For

the edge cover problem, this multiplicative overhead increases polynomially with the

number of qubits. One of the additive overheads arises from determining TAQO, TQAOA,

or TGrover for evolving the system to G. This overhead increases logarithmically with

TAQO, TQAOA, and TGrover. For most practical problems and Hamiltonians of interest,

both the multiplicative and additive overheads are subleading compared to TAQO, TQAOA,

and Tcount, when P is exponentially small in the number of qubits. The overheads are

subleading to TGrover in Grover’s algorithm for problems in NP.

3.1. Grover’s algorithm with importance-sampling.

Grover showed [84] that the target wave function |ψtarget〉 in Eq. (8) can be reached in

Grover’s algorithm by choosing the initial state and the diffusion operator as

|ψ(0)〉 =
∑

φ

√
w(φ)|φ〉,

U0 = 1− 2|ψ(0)〉〈ψ(0)|. (9)

The oracle is the same as usual, UG = 2P̂G − 1, where P̂G =
∑

g∈G |g〉〈g| is the projector

onto G. Repeated iterations of U0UG rotate the wave function in the plane of |ψ(0)〉 and

|ψtarget〉, and the wave function reaches |ψtarget〉 after TGrover = π/(4
√
P) iterations.

Moreover, since the instantaneous wave function |ψ(t)〉 after t Grover iterations

is always a superposition of only |ψ(0)〉 and |ψtarget〉, both of whose amplitudes in the
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computational basis importance-sample the ground states |g〉, the amplitudes of |ψ(t)〉
also importance-sample the ground states, up to an overall constant factor. That is,

∣∣∣∣
〈ψ(t)|g〉
〈ψ(t)|g′〉

∣∣∣∣
2

=
w(g)

w(g′)
∀ t, ∀g, g′ ∈ G. (10)

The oracle UG can be implemented with polynomially many gates (i.e., nr gates for

n qubits) on a quantum circuit for Hamiltonians that encode classical problems in the

computational complexity class NP. Polynomial-time implementations of Grover oracles

do not exist for Ĥz which encode problems outside NP. The complexity of the circuit

for preparing the initial state |ψ(0)〉 and implementing U0 depend on the function w.

For the weights in Eq. (5), |ψ(0)〉 =
⊗|E|

i=1(
√

1− q|0〉i +
√
q|1〉i) is a product state.

Figures 3(a)-(c) show the circuit to prepare |ψ(0)〉 and implement U0 and UG, for the

problem defined in Eq. (4) and the weights in Eq. (5). The state |ψ(0)〉 can be prepared

with only single-qubit gates. Implementing U0 and UG require multi-qubit controlled-

phase gates. There are several techniques to decompose the multi-qubit phase gates

with k bits to only one- and two-qubit gates, for example with O(k) gates using k − 3

ancillary bits [86], or O(k2) gates with no ancillary bits [86,87].

3.2. AQO with importance-sampling.

AQO works by preparing the system in an initial state, which is also a ground state

of a Hamiltonian Ĥx, and then adiabatically varying the Hamiltonian as Ĥ(t) =

α(t)Ĥx + β(t)Ĥz from t = 0 to t = TAQO, with α(0) = β(TAQO) = 1 and α(TAQO) =

β(0) = 0. The most common choices for the initial state and the Hamiltonian are

|ψ(0)〉 =
⊗|E|

i=1 (|0〉i + |1〉i)/
√

2 and Ĥx = −∑n
i=1 σ̂

x
i . In some variations, β is fixed

while only the ratio α/β is varied from ∞ to 0, which leads to the same final state

as varying both α and β with time. However, as has been observed before [64–71],

evolving with Ĥx = −∑n
i=1 σ̂

x
i leads to exponential suppression of a significant number

of classical ground states in the final wave function.

In this section, we will show that the final wave function |ψtarget〉 can be reached in

AQO by choosing the initial state as |ψ(0)〉 in Eq. (9), and the mixing Hamiltonian as

Ĥx =
U0 − 1

2
= −|ψ(0)〉〈ψ(0)|, (11)

with U0 in Eq. (9). We will also show that the amplitudes of the wave function in

the computational basis, during any time of executing AQO, importance-sample the

ground states of Ĥz. Both of these facts arise from the relation of Ĥx to U0. Therefore,

like Grover’s algorithm, the evolution of the wave function is restricted to lie in a

smaller, symmetric, subspace than the full Hilbert space, and wave functions in this

symmetric space importance-sample the ground states. The AQO schedule we consider

is β(t) = 1− α(t) = t/TAQO. We analytically derive a lower bound for TAQO.

One can implement a discrete-time version of AQO on a circuit by applying

the sequence of operators
∏TAQO/dt

j=1 exp(−iα(tj)Ĥxdt) exp(−iβ(tj)Ĥzdt) to |ψ(0)〉.
Figures 3(c)-(d) show how to implement exp(iαĤx) and exp(−iβĤz) for the paw graph
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Figure 3. Quantum circuits to prepare the initial quantum state and implement one

discrete quantum evolution step, for the paw graph shown in (a). (a) Circuit to prepare

the initial state |ψ(0)〉 [in Eq. (9)] for the weight function in Eq. (5), when the input

state is |00 · · ·〉. U = exp(−iσy sin−1
√
q) is a one-qubit unitary operator. Preparing

|ψ(0)〉 for more general weight functions is non-trivial. (b) Implementation of the

Grover oracle UG for Ĥz in Eq. (4). The circuit has four ancillary bits (dashed lines),

one each to verify the local constraint satisfaction for the corresponding node labeled

in pink. Circuits with fewer or no ancillary bits may be possible. (c) Implementation

of exp(iαĤx), where the many-qubit gate is the controlled-phase gate with phase

exp(−iα). This circuit also implements the Grover diffusion operator U0 [in Eq. (9)]

when α = π. (d) Implementation of exp(−iβĤz), where the single-qubit gate is

e−iβ |1〉〈1|, and the multi-qubit gates are controlled-phase gates with phase exp(−iβ).

in Fig. 3(a). One of the advantages of AQO (and QAOA in Sec. 3.3) is that it is possible

to similarly construct circuits for exp(−iβĤz) with polynomially many (i.e., nr for n

qubits) gates for several other practical problems of interest outside NP, even when it

is not possible to implement the Grover oracle with polynomially many gates.

If Ĥ changes adiabatically, the adiabatic theorem guarantees that the final wave

function at t = TAQO will be a ground state of Ĥz. Specifically, the adiabatic theorem

states that [88]

〈ψ(TAQO)|P̂G|ψ(TAQO)〉 ≥ 1− η2 (12)

if ∣∣∣
∣∣∣dĤ/dt

∣∣∣
∣∣∣ ≤ η∆(t)2, (13)

where ∆(t) is the instantaneous energy difference between the lowest two eigenstates of

Ĥ(t), and || · · · || denotes operator norm.

Next, we find the spectrum of Ĥ(α, β) = αĤx + βĤz, and use this to analyze the

scaling of TAQO with the system size for the adiabaticity condition to be satisfied. As

an example, Fig. 2(b) shows the spectrum of Ĥ(α/β, 1) for the edge cover problem on

the paw graph.
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Figure 4. (Color online) The number of discrete AQO steps TAQO/dt and the

number of QAOA steps TQAOA in a numerical simulation of these algorithms, until

the system reaches desired ground state occupation 〈ψ(T )|P̂G |ψ(T )〉 = 1 − η2. (a)

TAQO/dt (black squares) and TQAOA (blue circles) required to reach 1 − η2 = 0.8,

for q = sin2(0.3π) on linear graphs. These two curves scale the same way with

the system size as 1/P (black dashed line) and 1/
√
P (blue solid line) respectively

up to overall polynomial prefactors. For the class of graphs and q considered here,

1/P ∼ 1.47|E| [see also Eq. (35) for a closed form]. (b) TAQO/dt required to reach

1− η2 = 0.5 for an ensemble of random graphs with mean vertex degrees 1.25 and 2.5,

|E| ranging from 5 to 25, and q varying from 0 to 1. We chose dt = 0.1. TAQO

scales as 1/P, consistent with the analytical prediction in Eq. (27). (c) TQAOA

required to reach 1 − η2 = 0.5 for the same ensemble of graphs and parameters

as (b). For this ensemble, TQAOA mostly lies between (sin−1
√

1− η2)/(2
√
P) and

(sin−1
√

1− η2)/
√
P. Notably, the number of Grover iterations required to reach the

same ground state occupation is TGrover = (sin−1
√

1− η2)/(2
√
P). Only points with

TQAOA < 1000 and TAQO/dt < 1000 are shown.

3.2.1. Spectrum of Ĥ(α, β). The eigenstates of Ĥ(α, β) fall in two kinds. In

the first kind, the eigenstates are anti-symmetric combinations (
√
w(φ′)|φ〉 −√

w(φ)|φ′〉)/
√
w(φ) + w(φ′), with eigenvalue λ = βEj, where both |φ〉 and |φ′〉 are

classical states with classical energy Hz(φ) = Hz(φ
′) = Ej. For every j, there are

N
(0)
j − 1 such independent eigenstates of Ĥ. The eigenvalues of these states are shown

as red lines in Fig. 2(b). We will see that the wave function has no overlap with these

eigenstates at any time during AQO or QAOA.

The second kind of eigenstates lie in a Hilbert space HS spanned by the symmetric

basis states

|Φj〉 =

∑
φ:Hz(φ)=Ej

√
w(φ)|φ〉

√
N

(1)
j

. (14)

Letting P̂S be the projection operator into HS, the projected Hamiltonian is ĤS(α, β) =

αĤxS + βĤzS, where

ĤzS = P̂SĤzP̂S =
∑

j

Ej|Φj〉〈Φj|,

ĤxS = P̂SĤxP̂S = −
(∑

i

√
N

(1)
i |Φi〉

)(∑

j

√
N

(1)
j 〈Φj|

)
. (15)

The eigenvalue equation for ĤS is det(ĤS(α, β)−λ) = 0. Note that −ĤxS is also a
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projection operator, like −Ĥx. Therefore, det(ĤS(α, β)− λ) is at most linear in α, and

we can use Taylor expansion and Jacobi’s formula to write

det(ĤS(α, β)− λ) = det(βĤzS − λ) + α
d det(αĤxS + βĤzS − λ)

dα

= det(βĤzS − λ) + αTr(ĤxS adj(βĤzS − λ)), (16)

where adj(· · ·) is the adjugate. Substituting Eq. (15) into Eq. (16), we obtain

det(ĤS(α, β)− λ) =
∏

j

(βEj − λ)−
∑

k

αN
(1)
k

∏

j 6=k

(βEk − λ). (17)

Then, the eigenvalues λ of ĤS(α, β) are given by the implicit algebraic equation

∑

j

N
(1)
j

βEj − λ
=

1

α
. (18)

For α, β,N
(1)
j−1, N

(1)
j > 0, the left hand side of this equation is a function of λ which

monotonically increases from −∞ to ∞ as λ changes from βEj−1 to βEj. Therefore,

Eq. (18) has exactly one solution in the range

βEj−1 ≤ λj ≤ βEj, 0 < j < m,

βE0 − α ≤ λ0 ≤ βE0. (19)

The equalities, λj = βEj or λj+1 = βEj, hold true only when αN
(1)
j = 0, and λ0 = βE0−α

only when N
(1)
0 = P = 1.

3.2.2. Proof of importance-sampling. HS is closed under the action of unitaries

exp(−iĤxα) and exp(−iĤzβ), for arbitrary α and β. The initial state |ψ(0)〉 [in Eq. (9)]

lies in HS, and therefore the instantaneous wave function during any time in AQO lies

in HS. As a result, the instantaneous wave function always importance-samples the

ground states |g〉, leading to Eq. (10) for AQO as well. This is illustrated in Fig. 1(a).

In the adiabatic limit, |ψ(TAQO)〉 lies in G and inHS, therefore |ψ(TAQO)〉 = |ψtarget〉.

3.2.3. Calculating TAQO. Naively, one expects that the evolution time TAQO for the

adiabaticity condition [Eq. (13)] to be satisfied is TAQO =∞. This naive expectation is

because Ĥ has ground state degeneracy at t = TAQO, and therefore the minimum energy

gap ∆∗ above |ψtarget〉 is 0. However, the required TAQO for Eq. (13) to be satisfied is in

fact finite, because the instantaneous wave function always lies in HS. The energy gap

in this subspace is ∆ = λ1 − λ0 > 0 always if P > 0, as shown by Eqs. (18) and (19).

We can lower-bound TAQO for the adiabatic condition to be met, by estimating the

minimum value of ∆. We find from Eq. (17) that
∏

j

(λj − βE0) = det(ĤS(α, β)− βE0) = −αP
∏

j 6=0

β(Ej − E0). (20)

Eqs. (19) and (20) then result in the inequality

αβP(E1 − E0) ≤ (βE0 − λ0)(λ1 − βE0) ≤ αβP(Em−1 − E0). (21)
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Using the relation |x+ y| ≥ 2
√
xy, and setting x = λ1 − βE0, y = βE0 − λ0, we obtain

∆ = λ1 − λ0 ≥ 2
√
αβP(E1 − E0). (22)

Next, we obtain bounds for β = β∗ and α = 1 − β∗ where the minimum value

∆ = ∆∗ occurs, for P � 1. We will assume that E1−E0 & O(1) and ∆∗ � 1. The latter

is typically valid when P � 1 and E1 − E0 & O(1). The sum of eigenvalues of Ĥs(α, β)

is
∑

j λj = Tr(Ĥs(α, β)) = −α +
∑

j βEj. When this is combined with the inequalities

for λ2, · · · , λm−1 in Eq. (19), we find that β(E1 + E0)−α ≤ λ1 + λ0 ≤ β(Em−1 + E0)−α,

which can be rewritten as

β(E1 − E0)− α ≤ (λ1 − βE0)− (βE0 − λ0) ≤ β(Em−1 − E0)− α. (23)

For β(E1 − E0) � α, the first inequality in Eq. (23) can be satisfied only if

βE0 − λ0 � λ1 − βE0 ∼ β(E1 − E0). In this limit, ∆ ∼ β(E1 − E0) & O(1),

which is much larger than the minimum value it can take,
√

4αβP(E1 − E0), since

β(E1 − E0)/
√

4αβP(E1 − E0) � 1/
√

4P � 1. For β(Em−1 − E0) � α, the second

inequality in Eq. (23) can be satisfied only if λ1 − βE0 � βE0 − λ0 ∼ α. In this limit,

∆ ∼ α ∼ 1, which is again much larger than the minimum value it can take, since

α/
√

4αβP(E1 − E0) >
√

(Em−1 − E0)/(4P(E1 − E0)) � 1. Then, α∗ and β∗ do not lie

in either of the two limits above, leading to

β∗(E1 − E0) . α∗ . β∗(Em−1 − E0),
⇒ 1

1 + Em−1 − E0
. β∗ .

1

1 + E1 − E0
. (24)

The minimum value of ∆∗ depends on the product β∗(1 − β∗). Since the function

f(β) = β(1 − β) has no local minima, minx≤β≤y f(β) = min(x(1 − x), y(1 − y)). That

is, for β∗ lying in the interval given by Eq. (24),

∆∗ ≥
(

4(E1 − E0) min

( E1 − E0
(1 + E1 − E0)2

,
Em−1 − E0

(1 + Em−1 − E0)2
))1/2√

P . (25)

Then, using Eq. (13) and the relation ||dĤ/dt|| = ||Ĥz−Ĥx||/TAQO ≤ (Em−1+1)/TAQO,

TAQO ≥
1

4ηP
Em−1 + 1

(E1 − E0) min
(

E1−E0
(1+E1−E0)2 ,

Em−1−E0
(1+Em−1−E0)2

) . (26)

This is a generalization of the result found in Refs. [72–74], extended to importance-

sample ground states of a general classical Hamiltonian with a general weight function.

Our result has additional factors arising from α∗β∗ and ||Ĥz− Ĥx|| (which were 1/4 and

2 respectively in [72–74]). When our assumption is violated, i.e. E1 − E0 � 1, bounds

similar to Eq. (24), (25) and (26) can be derived by changing the AQO schedule to

α = (E1 − E0)(1− β).

For the edge cover problem, E0 = 0, E1 = 1 and Em−1 = |V |. Then, Eq. (26) gives

TAQO ≥
(|V |+ 1)3

4η|V |P . (27)



A quantum algorithm to count weighted ground states of classical spin Hamiltonians 14

Fig. QAOA with 
constant angles

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■■■■■■■■■■■■■■

■
■
■■■■■■■■■■■

■
■
■

■

■

■
■

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲

0 5 10 15 20 25 30
0.
0.5
1.
1.5
2.
2.5
3.

0.
0.5
1.
1.5
2.
2.5
3.

j

α β

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●

0 5 10 15 20 25 30
0.0

0.1

0.2

0.3

0.4

0.5

j

<P
G
>

(a) (b)

Figure 5. (Color online) (a) The variationally optimized αj and βj in QAOA, and (b)

the instantaneous projection 〈ψ(j)|P̂G |ψ(j)〉, for the random graph shown in the inset

in (b). The points show the numerical results for αopt
j and βopt

j obtained from greedy

optimization, while the lines show the results when αopt = 0.78π and βopt = 0.12π are

variationally obtained constants. Variationally finding αopt
j and βopt

j with the greedy

method for j = 1, · · · , TQAOA takes time T greedy
αβ search ∼ T 2

QAOA, while finding constant

αopt and βopt might require only T constant
αβ search ∼ O(1).

3.2.4. Numerical simulation of AQO for edge covers. Figures 4(a)-(b) numerically

confirm the scaling in Eq. (27), and the applicability of this asymptotic formula for

finite problem sizes. They plot the number of discrete AQO steps TAQO/dt required

to reach 〈ψ(TAQO)|PG|ψ(TAQO)〉 = 1 − η2 in a simulation of discrete-time AQO of Ĥz

in Eq. (4), with discrete time intervals dt. In Fig. 4(a), we plot TAQO/dt for linear

graphs with q = sin2(0.3π), and in Fig. 4(b), for an ensemble of random graphs of

different vertex degrees and different weighting parameters q. In both these cases, we

find that TAQO ∼ 1/P . We did not verify the logarithmic corrections to this scaling,

(|V | + 1)3/|V |, in Eq. (27). We arbitrarily chose η and dt for these plots, but we find

the same scaling for any η and small enough dt.

TAQO in Eq. (27) scales the same way as TOMCS for fixed ε and δ [see Eq. (7)].

Because of the additional counting overhead Tcount that will be described in Sec. 3.4, the

total time taken by AQO, TAQO × Tcount, increases faster with system size than OMCS.

Alternative AQO schedules, such as the one in Refs. [72–74] where the functional forms

of α(t) and β(t) are optimally chosen, could result in a quadratic speedup of TAQO.

Rather than pursuing this, we next use a variational algorithm, QAOA, to optimize the

quantum evolution. We find potential for a quadratic speedup.

3.3. QAOA with importance-sampling.

QAOA is a classical-quantum hybrid variational algorithm that achieves the same goal

as AQO, but has a circuit depth that scales more favorably with system size, if the

angles αj and βj (defined below) are chosen optimally as αopt
j and βopt

j at each time

step tj. In this hybrid algorithm, one performs a quantum evolution with a certain

choice for αj and βj, and evaluates a metric such as 〈ψ(j)|P̂G|ψ(j)〉 by measuring the
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qubits in the computational basis at the end of the evolution. One then uses calls to

this quantum algorithm from classical routines to find the best values αopt
j and βopt

j that

maximize this metric with the smallest number of time steps, TQAOA, required to reach

sufficiently large 〈ψ(TQAOA)|P̂G|ψ(TQAOA)〉. If this metric cannot be implemented easily,

e.g. for Ĥz that encodes problems outside NP so its ground states are not verifiable

in polynomial time, one could use a different metric that is easier to implement. An

example of such a metric is 〈ψ(j)|Ĥz|ψ(j)〉, in cases where it is easier to implement than

〈ψ(j)|P̂G|ψ(j)〉. Note that 〈ψ(j)|P̂G|ψ(j)〉 = |〈ψ(j)|ψtarget〉|2, since |ψ(j)〉 still lies in the

symmetric subspace HS if |ψ(0)〉 and Ĥx are chosen as given in Eqs. (9) and (11).

Here, we consider two variational search methods to find αopt
j and βopt

j for the edge

cover problem. First, we do a greedy method where, for |ψ(j)〉 recursively defined as

|ψ(j)〉 = exp(−iαjĤx) exp(−iβjĤz)|ψ(j − 1)〉, αj = αopt
j and βj = βopt

j are chosen to

maximize 〈ψ(j)|P̂G|ψ(j)〉 for fixed α1, · · · , αj−1, β1, · · · , βj−1. The points in Fig. 5 show

the results of numerically implementing the greedy method for a random instance of the

edge cover problem shown in the inset of Fig. 5(b) with q = sin2(0.3π). We evolve the

system until it reaches 〈ψ(j)|P̂G|ψ(j)〉 = 0.5. Figure 5(a) plots αopt
j and βopt

j versus j,

and Fig. 5(b) plots 〈ψ(j)|P̂G|ψ(j)〉.
To analyze the scaling of the circuit depth in the greedy method versus problem

size, we repeat this procedure for a larger variety of graphs and weights. Figure 4(a)

shows TQAOA required to reach 〈ψ(TQAOA)|P̂G|ψ(TQAOA)〉 = 0.8 for linear graphs at q =

sin2(0.3π), and Fig. 4(c) shows TQAOA required to reach 〈ψ(TQAOA)|P̂G|ψ(TQAOA)〉 = 0.5

for the same random ensemble of graphs and weighting parameters q used in Fig. 4(b).

We observe that

TQAOA ∼ 1/
√
P , (28)

possibly up to logarithmic corrections. This is the same scaling as the number of Grover

iterations in Grover’s algorithm, TGrover ∼ 1/
√
P . There is a greater spread of TQAOA

versus 1/
√
P than TGrover versus 1/

√
P or TAQO versus 1/P , however, we observe that

1 < TQAOA/TGrover < 2 nearly always, even when P changes by 6 orders of magnitude

in Fig. 4(c).

In addition to the circuit depth, the greedy method involves another time scale—

the time to find the variational parameters αopt
j and βopt

j . Since finding αopt
j and βopt

j at

the jth step in the greedy method requires preparing |ψ(j − 1)〉, the time required to

find αopt
j and βopt

j must scale as at least O(j). Therefore, the total time T greedy
αβ search to find

αopt
j and βopt

j for j = 1, · · · , TQAOA in the greedy method scales as T greedy
αβ search ∼ T 2

QAOA.

The motivation for our second variational search method is to reduce Tαβ search.

Our second method is based on a simple observation about αopt
j and βopt

j in the greedy

method in Fig. 5(a)—they are nearly constant with j. Based on this, we propose fixing

αopt
j and βopt

j at constant values. We note that this trend of nearly constant αopt
j and

βopt
j occurs for most of the edge cover problems, but not necessarily all of them.

The solid lines in Fig. 5 show the results of numerically implementing our second

QAOA method, for the same random graph as the greedy method, but with constant
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αopt = 0.78π and βopt = 0.12π. Remarkably, 〈ψ(j)|P̂G|ψ(j)〉 in Fig. 5(b) varies nearly

identically when we use these constant parameters as it did with the greedily obtained

parameters. Most importantly, the time required to variationally find constant αopt and

βopt is T constant
αβ search ∼ O(1).

The scaling TQAOA ∼ TGrover is not surprising, because QAOA with our mixing

Hamiltonian has close connections to Grover’s algorithm. The unitary exp(−iαĤx) is

linearly related to the diffusion operator U0, and is equal to U0 for α = π. The unitary

exp(−iβĤz), which multiplies different energy manifolds of Ĥz by different phases, is

a generalization of the oracle UG which multiplies all excited states by −1. In fact, we

even find cases where QAOA is identical to Grover’s algorithm. Two examples are the

triangle graph and the linear 1×3 graph. For both these graphs, the ground state energy

of Hz is 0, and the excited energies are odd numbers, Hz = 1 or 3. Therefore, the optimal

QAOA parameters are αopt
j = βopt

j = π, and exp(−iαopt
j Ĥx) = U0, exp(−iβopt

j Ĥz) = UG.

The total time taken by QAOA to estimate P scales as Tαβ search + TQAOA× Tcount.
The greedy method, which has Tαβ search ∼ T 2

QAOA ∼ 1/P , has no speedup over OMCS,

whose computational time also scales as TOMCS ∼ 1/P . However, in many cases, we find

that αopt
j and βopt

j are nearly constant and therefore it is possible to find the optimal

parameters in Tαβ search ∼ O(1). In this case, QAOA has a sub-quadratic speedup over

OMCS, as we will see in Sec. 4. Motivated by this, in the rest of this paper, we show

results for TQAOA obtained from the greedy method, and neglect the overhead Tαβ search

for finding αopt
j and βopt

j . Finding such quick variational optimization routines with

small Tαβ search is an ongoing area of research [38,40–42,48,55–58].

3.4. Counting solutions by repeated measurements

In this section, we show how to estimate P , with a user-specified confidence on its relative

error, in the asymptotic limit of large system size. We do this by iterating either of the

three algorithms described in Secs. 3.1-3.3 Tcount times, and analyzing the measurements

in those experiments using the capture-recapture method [89, 90], generalized to count

with weights w(g). We describe this procedure below.

After evolving the system to a state |ψ(T )〉 with a large overlap, 1− η2, with G, it

is measured in the computational basis, giving us a ground state of Ĥz with probability

〈ψ(T )|PG|ψ(T )〉 = 1−η2. Let M denote the number of times a ground state is measured

in M ′ iterations. We statistically analyze only these M states to estimate P , and discard

all the excited states measured. For problems outside NP, where one cannot verify when

a ground state is measured in polynomial time, M could denote the number of states

measured with the lowest Hz and therefore assumed to be ground states. This is a

weaker criterion than counting states which are certain to be ground states.

Of the M ground states measured, we denote the number of distinct ground states

measured as QM , and the total weight w(g) of all the ground states measured as RM .
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Both QM and RM are sharply peaked random variables with mean (see Appendix A)

〈QM〉 =
M∑

µ=1

(−1)µ−1

(
M

µ

)
Pµ
Pµ ,

〈RM〉 = M
P2

P . (29)

In the limit that Pµ/Pµ rapidly decays with µ, which is true for large problem instances

at fixed q /∈ {0, 1}, the series for 〈QM〉 can be truncated at O(P2/P2), giving

〈QM〉 ≈M − M(M − 1)

2

P2

P2
. (30)

P can then be obtained from Eqs. (29) and (30) as

P ≈ M(M − 1)〈RM〉
2(M − 〈QM〉)

. (31)

In practice, one would estimate Pest by making S measurements of QM and RM and

finding the sample means RM and QM from this sample of size M × S. This estimate

for P would have some relative error to the actual P . For sufficiently large S used to

estimate QM and RM , the relative error can be upper-bounded by ε with confidence

1 − δ [Eq. (6)] by appealing to the central limit theorem. The confidence is given by

(see Appendix B)

1−δ =
1

2
erf

(
ε

1− ε

√
M(M − 1)SP2

2P2

)
+

1

2
erf

(
ε

1 + ε

√
M(M − 1)SP2

2P2

)
.(32)

Inverting this relation for large S—so that the central limit theorem applies—and for

ε, δ � 1, we obtain

S & O

( | ln(δ)|P2

P2M2ε2

)
. (33)

The total number of iterations in this procedure, Tcount = M ′×S ∼M×S/(1−η2),
is minimized by maximizing M . However, M cannot be increased indefinitely, since S

has to be a large enough integer. We let S ∼ O(1), resulting in

Tcount ∼
M

1− η2 ∼
√
| ln(δ)|

ε(1− η2)

√
P2

P2

. (34)

It is noteworthy that Tcount ∝
√
| ln(δ)|/ε scales more favorably with ε and δ, as

compared to TOMCS which scales as | ln(δ)|/ε2.

4. Results: comparing gate counts in QAOA and OMCS

The full quantum algorithm, including subroutines for determining the number of time

steps in each iteration to evolve the system close to G, recording ground states of Ĥz,

and doing the statistical analysis on the measured ground states to estimate P , is

presented in Appendix C. For brevity, we only describe AQO for the edge cover problem

in Appendix C. QAOA and Grover’s algorithm can be implemented in a similar fashion.



A quantum algorithm to count weighted ground states of classical spin Hamiltonians 18

The total number of one- and two-qubit gates in our quantum algorithms to estimate

the weighted count P , with confidence 1 − δ on the maximum relative error ε, is

asymptotically Tcount × (Tψ(0) + (Tx + Tz) × number of time steps), where the number

of time steps is TGrover, TAQO/dt or TQAOA. The scaling of the number of steps in one

iteration, and the number of iterations Tcount, is shown in Table 1. The scaling for

TQAOA is numerically observed for the edge cover problem, while TAQO/dt and TGrover

were analytically derived. Tψ(0), Tx, and Tz are the number of gates required to prepare

|ψ(0)〉, and to implement exp(iαĤx), and exp(iβĤz), in AQO and QAOA. For Grover’s

algorithm, Tx and Tz refer to the number of gates required to implement U0 and UG.

In addition to the gate counts described here, there are additional overheads, such as

Tαβ search for finding the variational parameters in QAOA, and trial experiments for

finding TAQO or TGrover as described in Appendix C. In heuristic methods like the one

described in Sec. 3.3, where αopt and βopt are constant, Tαβ search ∼ O(1). Some of the

other overheads were discussed in Sec. 3.

There is a close correspondence between the number of quantum gates used by our

algorithm to implement one discrete step of quantum evolution, and the computational

times in OMCS for one random sample. The number of gates Tz to implement exp(iβĤz)

scales the same way as calculating Hz for a random classical state, for arbitrary Ĥz,

and both scale as |E| for the edge cover problem if ancillary qubits are used. For Ĥz

that encodes problems in NP, Tz for Grover’s algorithm scales the same way as Tz
for AQO and QAOA. There can be a polynomial overhead to implement multi-qubit

gates if no ancillary qubits are used. Similarly, Tx and Tψ(0) scale the same way as

the computational time for drawing one random sample in OMCS, for an arbitrary

distribution w(φ), plus polynomial overheads for implementing multi-qubit gates.

Figures 1(b-d) show the scaling of the total computational time taken by OMCS and

QAOA to estimate P with ε = 0.05 and δ = 0.05, obtained from a numerical simulation

of these two algorithms. We consider linear graphs with q = sin2(0.35π) in Fig. 1(b),

and graphs of type 2× n with q = sin2(0.4π) and q = sin2(0.35π) in Figs. 1(c) and (d).

For OMCS, the computational time is the physical CPU time in seconds. For QAOA,

the computational “time” refers to the total number of one- and two-qubit gates, i.e.,

Tcount × (Tψ(0) + (Tx + Tz)× TQAOA), multiplied by a constant factor to lie on the same

scale as OMCS. The gates in Tx, Tz and Tψ(0) are counted assuming |E|−3 ancillary bits

are used, so that multi-qubit gates are implemented using O(|E|) one-qubit gates and

CNOTs. Only the asymptotically leading terms are included, and we have neglected

Tαβ search and the time required to find the depth TQAOA. The total “time” for QAOA in

Fig. 1 also does not include classical overheads incurred for e.g. the statistical analysis.

For all the three cases shown in Figs. 1(b)-(d), the total time for OMCS increases

faster than it does for QAOA with problem size. The speedup in QAOA is sub-

quadratic. We do not show the time for AQO, because it is not faster than OMCS.

The computational time for Grover’s algorithm scales the same way as QAOA.

It is worth noting that for all the graphs considered in Figs. 1(b)-(d), P can be

exactly computed in polynomial time O(|E|r) with classical algorithms. For the case of
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linear graphs, P ≡ P1 is even a special case of a family of analytically known formulae:

Pµ =
∑

r

(
|E| − r − 1

r

)
qµr(1− q)µ(|E|−r), (35)

obtained from the recursive relation Pµ(|E|) = qµPµ(|E| − 2) + (1− q)µPµ(|E| − 1). In

particular, P0(|E|) = Fib(|E|) is a Fibonacci number. More general graphs do not have

such closed-form formulae or polynomial-time algorithms, and OMCS or brute force are

the best available classical choices.

The quantum advantage in QAOA, observed in Fig. 1 for grid graphs, arises from

the quadratic speedup TQAOA ∼ 1/
√
P . The total computational time for QAOA, which

scales as Tαβ search+TQAOA×Tcount, is asymptotically lesser than that for OMCS, despite

including the multiplicative overhead Tcount ∝
√
P2/P2. As shown in Fig. 4, TQAOA

has a quadratic speedup even for random graphs and different weighting parameters.

Therefore, we expect QAOA to have a sub-quadratic speedup in estimating P for

arbitrary graphs, if there exists a quick variational search routine to find αopt
j and βopt

j .

We only plot the total computational time for regular grid graphs in Fig. 1(b-d), because

the exponential scaling of the total time with |E| is clean for this class of graphs.

5. Summary and Conclusions

We presented modified AQO and QAOA algorithms to estimate the weighted count

of the ground states of an arbitrary classical Hamiltonian, weighted by an arbitrary

function. We demonstrated these algorithms using Hamiltonians whose ground states

encode edge covers on graphs. We analyzed the computational time required by these

algorithms to prepare a quantum system in the ground state of these Hamiltonians,

analytically for AQO and numerically for QAOA. We described a statistical technique to

estimate the total weight of the ground states, by repeated iterations of AQO or QAOA.

We predicted and calculated the scaling properties of the total time taken by these

algorithms, and compared this total time against OMCS, which is one of the best error-

tractable classical algorithms. We showed that AQO with a linear schedule does not

have a speedup over classical OMCS, and that QAOA can have a sub-quadratic speedup

over OMCS when the total weight on the ground states is small. We also discussed,

with examples, how to minimize the resources required for the variational search of the

QAOA parameters, which is crucial for observing the sub-quadratic speedup.

Our ideas solve a long-standing open challenge in quantum optimization of how

to count or sample ground states of a classical Hamiltonian with a pre-determined

probability distribution. Although we demonstrated our algorithms with counting

edge covers, we expect that there are several other problems where our algorithms

can provide a competitive advantage over classical algorithms. Several combinatorial

counting problems, which have important practical applications such as quantifying and

verifying complex systems’ performance and uncertainty [85], can be cast as ground-

state counting problems of Ising-like spin Hamiltonians [91]. Our work opens avenues to
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using quantum algorithms to approximately solve such counting problems, even those

in the #P -hard complexity class which cannot be approached with existing quantum

algorithms for counting [72,80–82]. Moreover, the ideas we presented have the potential

to be implemented on current NISQ devices, and opens avenues to achieving quantum

advantage for solving important practical problems in engineering.
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Appendix

Appendix A. Proof of Eq. (29)

Here, we derive expressions for 〈QM〉 and 〈RM〉.
Conditioned on a measurement yielding a ground state, the probability of measuring

|g〉 is w(g)/P . Then the average weight of one measurement is

〈R1〉 =
∑

g∈G

w(g)
w(g)

P =
P2

P . (A.1)
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〈RM〉 is the average total weight after M measurements. Since each measurement is

independent,

〈RM〉 = M〈R1〉, (A.2)

proving the second line of Eq. (29).

The average number of distinct ground states measured is

〈QM〉 =
M∑

Q=1

Q Pr(QM = Q), (A.3)

where Pr(QM = Q) is the probability of measuring Q distinct ground states in M

measurements. To calculate this probability, imagine a set of M experiments where

the ground state |g1〉 is measured n1 times, |g2〉 is measured n2 times, and so on, such

that n1 + n2 + · · · + nQ = M and n1, · · · , nQ ≥ 1. The probability that this set of

measurements occurs is

Pr({gi, ni}) =

(
w(g1)

P

)n1
(
w(g2)

P

)n2

· · ·
(
w(gQ)

P

)nQ M !

n1!n2! · · ·nQ!
.(A.4)

Then,

Pr(QM = Q) =
∑

n1+n2+···+nQ=M

Pr({gi, ni}). (A.5)

We will show that Eq. (A.3) leads to the first line of Eq. (29) in the main text,

by comparing the coefficient of the product
(
w(g1)
P

)n1
(
w(g2)
P

)n2

· · ·
(
w(gQ)

P

)nQ

in both

equations. This coefficient in Eq. (A.3) is

C1(n1, n2, · · ·nQ) = Q
M !

n1!n2! · · ·nQ!
. (A.6)

The coefficient of the same product in 〈QM〉 in Eq. (29) is

C2(n1, n2, · · ·nQ) =
M∑

µ=1

(−1)µ−1

(
M

µ

)(
(M − µ)!

(n1 − µ)!n2!n3! · · ·nQ!

+
(M − µ)!

n1!(n2 − µ)!n3! · · ·nQ!
+ · · ·

)

=
M !

n1!n2! · · ·nQ!

M∑

µ=1

(−1)µ−1

((
n1

µ

)
+

(
n2

µ

)
+ · · ·+

(
nQ
µ

))

= Q
M !

n1!n2! · · ·nQ!
. (A.7)

Therefore, C1(n1, n2, · · ·nQ) = C2(n1, n2, · · ·nQ). This proves the first line of Eq. (29).

Although we have completed the proof for Eq. (29), we present another, simpler,

proof for the first line of Eq. (29), for the special case q = 1/2. For this special case,

w(φ) = 1/2|E| ∀|φ〉 and Pµ = N
(0)
0 /2µ|E|. If the number of distinct ground states

measured in M measurements is QM , then the conditional average number of distinct

ground states after one more measurement is 〈QM+1〉 = QM + (1 − QM/P0). Then,
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averaging over all possible values of QM , we get 〈QM+1〉 = 1 + 〈QM〉(1 − 1/P0). This

recursive relation leads to a geometric series for 〈QM〉, whose result is

〈QM〉 =
M−1∑

µ=0

(1− 1/P0)
µ = P0(1− (1− 1/P0)

M). (A.8)

Binomially expanding this equation leads to the first line of Eq. (29).

Appendix B. Proof of Eq. (32)

Here, we calculate the probability 1− δ that Pest has a maximum relative error ε.

1−δ ≡ Pr

(∣∣∣∣1−
Pest

P

∣∣∣∣ < ε

)
= Pr

(〈QM〉 −Mε

1− ε < QM <
〈QM〉+Mε

1 + ε

)
.(B.1)

For large enough sample size S, the sample mean QM is normally distributed with 〈QM〉
and variance var(QM)/S (due to the central limit theorem). Therefore,

1−δ =
1

2
erf

(
(M − 〈QM〉)ε

1 + ε

√
S

var(QM)

)
+

1

2
erf

(
(M − 〈QM〉)ε

1− ε

√
S

var(QM)

)
.(B.2)

The variance of QM can be calculated using the same techniques as Appendix A, yielding

var(QM) = M2 +
M∑

µ=2

(−1)µ−1(2M − 1)

(
M

µ

)
Pµ
Pµ − 〈QM〉2

' M(M − 1)

2

P2

P2
+O(P3/P3) (B.3)

Plugging 〈QM〉 and var(QM) from Eqs. (29) and (B.3) into Eq. (B.2) leads to Eq. (32).

Appendix C. Full algorithm for AQO

Here, we describe all the subroutines to implement AQO: Determining TAQO in

Algorithm 1, measuring a ground state in one iteration of AQO in Algorithm 2, and

estimating P in Algorithm 3.

Algorithm 3 Subroutine for estimating P from measurements.

1: Arbitrarily pick S ∼ O(1) and M .

2: Repeat Algorithm 2 until M ground states are recorded. Compute QM and RM .

3: if QM = M then

4: M ← 2M

5: Go to Step 3

6: end if

7: Estimate QM and RM . Estimate Pest using Eq. (31), and δ using Eq. (32).

8: if 1− δ < desired confidence then

9: S ← 2S

10: Go to Step 3.

11: end if
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Algorithm 1 Subroutine for determining TAQO

1: Arbitrarily make a guess for TAQO.

2: Initialize system in |ψ(0)〉 using the appropriate circuit, such as the one in Fig. 3(a).

3: Apply unitary operations
∏TAQO

j=1 exp(−iα(tj)Ĥxdt) exp(−iβ(tj)Ĥzdt) to |ψ(0)〉.
4: Measure the system in the computational basis.

5: Repeat steps 2-4 to compute 〈ψ(TAQO)|P̂G|ψ(TAQO)〉 or other implementable metric.

6: if 〈ψ(TAQO)|P̂G|ψ(TAQO)〉 < 1− η2 then

7: TAQO ← 2 ∗ TAQO

8: Go to step 2.

9: end if

Algorithm 2 Subroutine for measuring a ground state.

1: Initialize system in |ψ(0)〉.
2: Set TAQO as determined by Algorithm 1.

3: Apply unitary operations
∏TAQO

j=1 exp(−iα(tj)Ĥxdt) exp(−iβ(tj)Ĥzdt) to |ψ(0)〉.
4: Measure the system in the computational basis.

5: if Measurement is not a ground state then

6: Discard the measurement.

7: Go to step 1.

8: else

9: Record the measurement.

10: end if
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