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It is commonly believed that there are only two types of particle exchange statistics in quantum
mechanics, fermions and bosons, with the exception of anyons in two dimension [1–4]. In principle,
a second exception known as parastatistics, which extends outside of two dimensions, has been
considered [5] but was believed to be physically equivalent to fermions and bosons [6, 7]. In this
paper we show that nontrivial parastatistics inequivalent to either fermions or bosons can exist in
physical systems. These new types of identical particles obey generalized exclusion principles, leading
to exotic free-particle thermodynamics distinct from any system of free fermions and bosons. We
formulate our theory by developing a second quantization of paraparticles, which naturally includes
exactly solvable non-interacting theories, and incorporates physical constraints such as locality. We
then construct a family of one-dimensional quantum spin models where free parastatistical particles
emerge as quasiparticle excitations. This demonstrates the possibility of a new type of quasiparticle
in condensed matter systems, and, more speculatively, the potential for previously unconsidered
types of elementary particles.

Introduction It is commonly believed that there are
only two types of particle exchange statistics — fermions
and bosons. The standard textbook argument for this
dichotomy goes as follows. Each multiparticle quantum
state is described by a wavefunction Ψ(x1, x2, . . . , xn),
a complex-valued function of particle coordinates in a
d dimensional space x1, x2, . . . , xn ∈ Rd. The parti-
cles are identical, meaning that when we exchange any
two of them (say x1, x2), the resulting wavefunction
Ψ(x2, x1, . . . , xn) must represent the same physical state,
and therefore can change by at most a constant factor

Ψ(x2, x1, . . . , xn) = cΨ(x1, x2, . . . , xn). (1)

If we do a second exchange, we have

Ψ(x1, x2, . . . , xn) = cΨ(x2, x1, . . . , xn)

= c2Ψ(x1, x2, . . . , xn), (2)

leading to c2 = 1, since the wavefunction cannot be
constantly zero. This provides exactly two possibilities,
bosons (c = 1) and fermions (c = −1).

Despite being simple and convincing, there are two im-
portant exceptions to the fermion/boson dichotomy. The
first exception is anyons in two spatial dimension (2D) [1–
4, 8], for which c can be any complex phase factor [9].
The second exception that has been considered is paras-
tatistics, which can be consistently defined in any dimen-
sion. The way this evades the textbook argument is that
the wavefunction can carry extra indices that transform
nontrivially during an exchange. Consider an n-particle
wavefunction ΨI(x1, x2, . . . , xn), where I is a collection
of extra indices corresponding to some internal degrees
of freedom inaccessible to physical measurements. Un-
der an exchange between particles j and j + 1 [10], the
wavefunction may undergo a matrix transformation

ΨI({xj}nj=1)|xj↔xj+1
=

∑

J

(Rj,j+1)
I
JΨ

J({xj}nj=1), (3)

for j = 1, . . . , n − 1, where the summation is over all
possible values of J . Similar to Eq. (1), the matrices
(Rj,j+1)

I
J have to satisfy some algebraic constraints to

guarantee consistency of Eq. (3):

j j + 1

=

j j + 1

,

j − 1 j j + 1

=

j − 1 j j + 1

(4)

R2
j,j+1 = 1, Rj−1,jRj,j+1Rj−1,j = Rj,j+1Rj−1,jRj,j+1.

The derivation of the first equation is similar to Eq. (2),
while the second one follows from the equivalence
of two different ways of swapping xj−1, xj , xj+1 to
xj+1, xj , xj−1. These constraints are equivalent to the
requirement that {Rj,j+1}n−1

j=1 generate a representation
of the symmetric group Sn [11]. If this representation
is not one-dimensional, we say Eq. (3) defines a type of
parastatistical particles, or paraparticles for short.
Parastatistics, and their apparent absence in nature,

has been discussed since the dawn of quantum mechan-
ics [12]. The first concrete theory of parastatistics was
proposed and investigated by Green in 1952 [5]. This
theory was subsequently studied in detail [13–17], and
also more generally and rigorously [6, 7, 18] within the
framework of algebraic quantum field theory [19, 20].
These works did not rule out the existence of paraparti-
cles in nature, but led to the conclusion that under cer-
tain assumptions any theory of paraparticles (in particu-
lar, Green’s theory) is physically indistinguishable from
theories of ordinary fermions and bosons, provided that
only local measurements are allowed. This seemingly ob-
viated the need to consider paraparticles, as they give
exactly the same physical predictions as theories of ordi-
nary particles.
In this paper we show that nontrivial paraparticles

that are inequivalent to any combination of fermions
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and bosons exist in physical models, in a way compat-
ible with spatial locality and Hermiticity. This poses
no contradiction with earlier results, as the construction
evades their restrictive assumptions. We demonstrate
this by first introducing a second quantization formula-
tion of parastatistics that is distinct from previous con-
structions, and in this formulation paraparticles display
generalized exclusion statistics and free-particle thermo-
dynamics inequivalent to fermions and bosons. Then we
show that these paraparticles emerge as quasiparticle ex-
citations in a family of one-dimensional quantum spin
models [21], explicitly demonstrating how to avoid the
aforementioned no-go theorems [6], allowing nontrivial
consequences of parastatistics to be physically observed.
Importantly, our construction includes exactly solvable
theories of free paraparticles [22], in which paraparti-
cle eigenmodes can be analytically obtained in a simi-
lar way as in the solution of free fermions and bosons.
Although our spin model realization works only in 1D,
our general formulation of paraparticles is valid in any
dimension, and we discuss promising directions to realize
emergent paraparticles in higher dimensional quantum
spin systems, and the potential existence of elementary
paraparticles in nature.

Basic formalism We first present our second quan-
tization formulation of parastatistics. This formulation
only realizes a subfamily of parastatistics defined by the
first quantization approach presented above, but the pay-
off is that it automatically guarantees the fundamental
requirement of spatial locality, which is not ensured by
the first quantization formulation [23]. In this formula-
tion, each type of parastatistics is labeled by a four-index
tensor Rab

cd (where 1 ≤ a, b, c, d ≤ m, m ∈ Z) satisfying
the two tensor equations

R

R

a b

c d

=

a b

c d

δ δ ,

R

R

R

a b c

d e f

=

R

R

R

a b c

d e f

, (5)

where Rab
cd = R

a b

c d
, and throughout this paper we use

tensor graphical notation where open indices are iden-
tified on both sides of the equation and contracted in-
dices are summed over, and a line segment represents a
Kronecker δ function. These two equations are reminis-
cent of Eq. (4), and we describe their precise relation
in the Supplementary Information (SI) [24]. The sec-
ond equation in Eq. (5) is known in the literature as the
constant Yang-Baxter equation (YBE) (whose solutions
are called R-matrices), which appears in diverse areas of
mathematical physics [25–27]. In Tab. I we present some
basic examples of R-matrices, and it can be checked by
straightforward computation that they satisfy Eq. (5).

For a given R-matrix, we define the paraparticle cre-

Ex. 1 2 3 4

Rab
cd −δadδbc δadδbc(−1)δab −δacδbd λabccd − δacδbd

zR(x) (1 + x)m (1 + x)m 1 +mx 1 +mx+ x2

TABLE I. Examples of R-matrices and their single mode
partition functions zR(x), as defined in Eq. (13), where x =
e−βϵ. The λ, c in Ex. 4 are m×m constant matrices satisfying
λcλT cT = 1m and Tr(λcT ) = 2 [28].

ation and annihilation operators ψ̂±
i,a through the com-

mutation relations (CRs)

ψ̂−
i,aψ̂

+
j,b =

∑

cd

Rac
bdψ̂

+
j,cψ̂

−
i,d + δabδij ,

ψ̂+
i,aψ̂

+
j,b =

∑

cd

Rcd
abψ̂

+
j,cψ̂

+
i,d,

ψ̂−
i,aψ̂

−
j,b =

∑

cd

Rba
dcψ̂

−
j,cψ̂

−
i,d, (6)

where i, j are mode indices (e.g., position, momentum),
and a, b, c, d are internal indices. Notice that Rab

cd =
±δadδbc gives back fermions (−) and bosons (+) with
an internal degree of freedom.
A crucial structure in our construction is the Lie alge-

bra of contracted bilinear operators defined as

êij ≡
m∑

a=1

ψ̂+
i,aψ̂

−
j,a. (7)

We show that the space {êij}1≤i,j≤N is closed under the

commutator [Â, B̂] = ÂB̂ − B̂Â, and the corresponding
Lie algebra is glN . First, using Eq. (6), we have

[êij , ψ̂
+
k,b] = δjkψ̂

+
i,b,

[êij , ψ̂
−
k,b] = −δikψ̂−

j,b, (8)

which leads to

[êij , êkl] = δjkêil − δilêkj . (9)

(See Methods for detailed derivation.) Eq. (9) is the CR
between the basis elements {êij}1≤i,j≤N of the glN Lie al-
gebra, where êij represents the matrix that has 1 in the i-
th row and j-th column and zero everywhere else. We will
see that this Lie algebra structure enables straightfor-
ward construction of theories of paraparticles that obey
locality, Hermiticity, and free particle solvability.
In the usual case of fermions, physical observables are

composed of even products of fermionic operators. This
comes from the physical requirement of locality — local
observables supported on disjoint regions (or space-like
regions in relativistic quantum field theory) must com-
mute. We define an analog for parastatistics and show
they have analogous properties: for each local region of
space S, we define a local operator on S to be a sum
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FIG. 1. The generalized exclusion statistics of paraparticles
defined by the R-matrices in Ex. 1-4 of Tab. I, and a compar-
ison to ordinary fermions and bosons.

of products of êij where i, j ∈ S. Then, Eq. (9) im-
mediately implies the aforementioned locality condition
[ÔS1

, ÔS2
] = 0 for S1 ∩ S2 = ∅.

Since all physical observables in quantum mechanics
are Hermitian, we need to define a Hermitian conjugate
† on the state space (which we define later) in order to
define local observables. It can be proven [24] that †
can be consistently defined on the state space such that
ê†ij = êji, for 1 ≤ i, j ≤ N . We define a local observ-

able in the region S to be a local operator ÔS in S that
is Hermitian Ô†

S = ÔS . For example, ÔS = êij êji with
i, j ∈ S is a local observable in S. A locally-interacting
Hamiltonian Ĥ is defined to be a sum of local observ-
ables Ĥ =

∑
S hSÔS , where hS ∈ R and the summation

is over local regions S whose diameters are smaller than
some constant cutoff. This definition of local observables
and Hamiltonians guarantees microcausality (no signal
can travel faster than a finite speed) in both relativistic
quantum field theory and non-relativistic lattice quan-
tum systems [29]. It also guarantees the unitarity of the

quantum theory, i.e. time evolution Û = e−iĤt (setting
ℏ = 1) generated by a Hamiltonian operator Ĥ is unitary,
and therefore conserves probability.

A particularly important family of physical observables
are the particle number operators n̂i ≡ êii. It follows
from Eq. (9) that they mutually commute [n̂i, n̂j ] = 0, so
they have a complete set of common eigenstates. Mean-
while, Eq. (8) gives [n̂i, ψ̂

±
j,b] = ±δijψ̂±

j,b, meaning that

ψ̂+
j,b (ψ̂−

j,b) increases (decreases) the eigenvalue of n̂j by
1, and does not change the eigenvalue of n̂i for j ̸= i. This
justifies the terminology creation and annihilation oper-
ators, since ψ̂+

j,b (ψ̂−
j,b) creates (annihilates) a particle in

the mode j. We also define the total particle number op-
erator n̂ =

∑N
i=1 n̂i, so we have [n̂, ψ̂±

j,b] = ±ψ̂±
j,b. These

CRs involving the number operators are the same as for
fermions and bosons. However, we will see later that due
to the generalized CRs between {ψ̂±

i,b} in Eqs. (6), the
spectrum of {n̂i} is different for paraparticles.

The state space To fully define a quantum theory, we
need to specify a multiparticle state space and define the
action of the creation and annihilation operators ψ̂±

i,a so
that Eq. (6) is satisfied. In the following we state the re-

sults without proof, and present the mathematical details
in the SI [24]. Analogous to the Fock space of fermions
and bosons, there is a vacuum state |0⟩ annihilated by

all ψ̂−
i,a, so the vacuum contains no particles, n̂|0⟩ = 0.

The state space is spanned by all states of the form
|ψ⟩ = ψ̂+

i1,a1
ψ̂+
i2,a2

. . . ψ̂+
in,an

|0⟩. The action of creation
operators on this set of states is described straightfor-
wardly by ψ̂+

i,a|ψ⟩ = ψ̂+
i,aψ̂

+
i1,a1

. . . ψ̂+
in,an

|0⟩. The action

of annihilation operators ψ̂−
i,a is uniquely determined by

the first relation in Eq. (6), which allows us to move ψ̂−
i,a

all the way to the right until it hits |0⟩ (which it annihi-
lates). A basis for the state space can be constructed as
follows. Let {Ψα

a1a2...an
}dn
α=1 be a complete set of linearly

independent solutions to the system of linear equations
∑

a′
j ,a

′
j+1

R
ajaj+1

a′
ja

′
j+1

Ψa1...a′
ja

′
j+1...an

= Ψa1...ajaj+1...an
(10)

for j = 1, 2, . . . , n− 1. Intuitively, Eq. (10) requires that
Ψa1...an

is an R-symmetric function, which in the case
of fermions or bosons (R = ±1) reduces to totally sym-
metric or antisymmetric functions. A basis for the state
space is constructed as the set of states of the form [24]

|α1
n1
, α2
n2
, . . . , αN

nN
⟩ = Ψ̂(1)+

n1,α1
Ψ̂(2)+

n2,α2
. . . Ψ̂(N)+

nN ,αN
|0⟩, (11)

where the numbers {(ni, αi)}Ni=1 can be chosen indepen-
dently for different modes (with the only constraint being
1 ≤ αi ≤ dni

for each i), and the operator

Ψ̂(i)+
n,α ≡

∑

a1a2...an

Ψα
a1a2...an

ψ̂+
i,a1

ψ̂+
i,a2

. . . ψ̂+
i,an

, (12)

creates a multiparticle state in the mode i with occupa-
tion number n (eigenvalue of n̂i ≡ êii). In the SI [24], we
define a Hermitian inner product on the state space, with
respect to which all physical observables are Hermitian,
thus completing the construction of a Hilbert space.

The numbers {dn}n≥0 define the generalized exclu-
sion principle for the paraparticles associated with R.
More precisely, a single mode can be occupied by multi-
ple particles, where the n-particle states are dn-fold de-
generate, as illustrated in Fig. 1. This generalizes the
Pauli exclusion for fermions (where d0 = d1 = 1, and
dn = 0,∀n ≥ 2), and the Bose-Einstein statistics (where
dn = 1,∀n ≥ 0) [30]. Calculation of {dn}n≥0 for the
R-matrices in Exs. 1-4 are given in Methods.

The numbers {dn}n≥0 allow us to compute the grand
canonical partition function for a single mode at temper-
ature T . Suppose that each particle in this mode carries
energy ϵ (i.e., the Hamiltonian is Ĥ = ϵn̂). Then

zR(e
−βϵ) ≡ Tr[e−βϵn̂] =

∞∑

n=0

dne
−nβϵ, (13)

where β = 1/(kBT ), kB is Boltzmann’s constant, and we
have absorbed the chemical potential µ into ϵ. The sin-
gle mode partition functions zR(e

−βϵ) for the R-matrices
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in Exs. 1-4 are given in Tab. I. Multi-mode partition
functions factorize into products of single-mode partition
functions exactly as for fermions and bosons.

The single mode partition function zR(x) (where x =
e−βϵ) provides a straightforward demonstration of the
non-triviality of the parastatistics for someR-matrices. If
the paraparticle system defined by R can be transformed
into a system of p flavors of free fermions and q flavors of
free bosons, then zR(x) = (1 + x)p(1 − x)−q. Therefore
the R-matrix given in Ex. 4 must define a non-trivial type
of parastatistics for m ≥ 3, since zR(x) = 1 +mx + x2

is an irreducible polynomial for m ≥ 3 and not equal to
(1+x)p(1−x)−q for any integers p, q [31]. When m = 2,
however, we have zR(x) = (1 + x)2, and it can be shown
that the parastatistics defined by this R-matrix is indeed
equivalent to two flavors of decoupled fermions. Ex. 3 is
similarly non-trivial for m ≥ 2.

Exact solution of free paraparticles In our second
quantization framework, the general bilinear Hamilto-
nian describing free paraparticles,

Ĥ =
∑

1≤i,j≤N

hij êij =
∑

1≤i,j≤N
1≤a≤m

hijψ̂
+
i,aψ̂

−
j,a, (14)

can be solved analogously to bosons and fermions. We
sketch this here; details can be found in Methods. We
require h∗ij = hji so that Ĥ† = Ĥ. Using a canoni-

cal transformation of {ψ̂±
i,a} that preserves the CRs in

Eq. (6), the Hamiltonian can be rewritten as

Ĥ =
N∑

k=1

ϵkñk, (15)

where {ϵk}Nk=1 are the eigenvalues of the N × N co-
efficient matrix hij , and ñk is the occupation number
operator for the mode k. The operators {ñk}Nk=1 mu-
tually commute, with common eigenstates defined in
Eq. (11) |α1

n1
, α2
n2
, . . . , αN

nN
⟩, and the energy eigenvalues are

E =
∑N

k=1 ϵknk, where {nk}Nk=1 are independent non-
negative integers and 1 ≤ αk ≤ dnk

encodes the single
particle exclusion statistics. The average occupation of
mode k can be obtained from Eqs. (13) and (15), yielding

⟨ñk⟩β ≡ Tr[ñke
−βĤ ]

Tr[e−βĤ ]
=
z′R(e

−βϵk)e−βϵk

zR(e−βϵk)
. (16)

Fig. 2 plots ⟨ñk⟩β as a function of βϵk for the R-matrices
in Exs. 3 and 4 (Tab. I) with m = 5, showing the distinct
finite-temperature thermodynamics of paraparticles com-
pared to ordinary fermions and bosons, characterizing a
new type of ideal gas. The thermal average for other
physical observables, including correlation functions in
and out of equilibrium, can all be calculated exactly.

Discussion Finally, we describe the potential impacts
of paraparticles, including routes to observing paraparti-
cles in nature. As part of this, we will describe a family

FIG. 2. The thermal expectation value of the single-mode oc-
cupation number ⟨n̂⟩β : comparison between paraparticles (la-
beled by the R-matrices in Exs. 3 and 4 of Tab. I with m = 5)
and ordinary fermions and bosons.

of exactly solvable models with paraparticles as the ele-
mentary excitations.

One promising setting for paraparticles is as quasipar-
ticle excitations in condensed matter systems. Signif-
icant insight to this direction and a proof-of-principle
that such excitations can occur in physical systems is
provided by a family of one-dimensional quantum spin
systems where free paraparticles emerge as quasiparticle
excitations. For each R-matrix, we define a Hamiltonian

Ĥ =
∑

i,a

Ji(x̂
+
i,aŷ

−
i+1,a + x̂−i,aŷ

+
i+1,a)−

∑

i,a

µiŷ
+
i,aŷ

−
i,a, (17)

where {x̂±i,a, ŷ±i,a}ma=1 are local spin operators (i.e. oper-
ators on different sites commute) acting on the i-th site,
whose definition depends on the R-matrix. The index
i runs from 1 to N , with N being the system size, and
we use open boundary condition JN = 0. The model
has a total conserved charge n̂ =

∑
i,a ŷ

+
i,aŷ

−
i,a which will

be mapped to the paraparticle number operator, and
x̂+i,a, ŷ

+
i,a (x̂−i,a, ŷ

−
i,a) increase (decrease) n̂ by 1. For exam-

ple, with the R-matrix in Ex. 3, the local Hilbert space V
ism+1-dimensional, with basis states |0⟩, {|1, b⟩}mb=1, the
ŷ±a are defined as (omitting the site label) ŷ+a |0⟩ = |1, a⟩,
ŷ−a |1, b⟩ = δab|0⟩, ŷ−a |0⟩ = ŷ+a |1, b⟩ = 0, and x̂±a = ŷ±a .
This is a simple, nearest-neighbor spin model that is real-
ized in 3-level Rydberg atom or molecule systems [32, 33].
For the definition of x̂±a and ŷ±a in general, see SI [24].

This model can be solved using a significant general-
ization of the Jordan-Wigner transformation (JWT) [34]
that we introduce here, in which the products of opera-
tors (“strings”) are replaced with matrix product opera-
tors (MPOs) [35]. Specifically, we introduce operators

ψ̂−
ia =

a−+

1

−+

2

−+

3

−+

i − 1

−
i

,

ψ̂+
ia =

a
+−
1

+−
2

+−
3

+−
i − 1

+

i

, (18)



5

where ŷ±j,a ≡ ±
j

a , Ŝab
j ≡ −+

j

a b = −[ŷ+j,a, x̂
−
j,b], and T̂

ab
j ≡

+−
j

a b = +[ŷ−j,a, x̂
+
j,b] are local spin operators acting on

site j. Both ψ̂±
ia act non-trivially on sites 1, 2, . . . , i and

act as identity on the rest of the chain. For example,
with the R-matrix in Ex. 3, Ŝab and T̂ ab act as Ŝab |0⟩ =
T̂ ab |0⟩ = δab |0⟩, Ŝab |1, c⟩ = −δbc |1, a⟩, and T̂ ab |1, c⟩ =
−δac |1, b⟩. The ψ̂±

i,a constructed in Eq. (18) satisfy the
parastatistical CRs in Eq. (6), as we prove in the SI [24]
using tensor network manipulations.

The Hamiltonian in Eq. (17) is written in terms of

{ψ̂±
i,a} as

Ĥ =
∑

i,a

Ji(ψ̂
+
i,aψ̂

−
i+1,a + ψ̂+

i+1,aψ̂
−
i,a)−

∑

i

µin̂i, (19)

so ψ̂±
i,a1

create/annihilate free emergent paraparticles in
the spin model. To gain insight into these excitations,
we note that in the special case m = 1, R = −1, the spin
model Eq. (17) is the spin-1/2 XY model, the operators

ψ̂±
i,a are fermionic creation and annihilation operators,

and the MPO JWT simplifies to the ordinary JWT.
These results imply a new type of quasiparticle statis-

tics, which can be searched for in condensed matter
systems, and a starting point is the exactly solvable
quantum spin model defined in Eq. (17). Systems with
such excitations may display a wealth of new phenom-
ena. Already non-interacting particles display interesting
physics, e.g. the integer quantum Hall effect, topological
insulators and superconductors, Bose-Einstein condensa-
tion, and Anderson localization, and generalizing these
to free paraparticles may lead to new phenomenon qual-
itatively different from their fermionic or bosonic coun-
terparts. Even more interesting physics occurs with in-
teractions. While interacting paraparticles in general
cannot be exactly solved, standard approximation tech-
niques that are based on free particle solvability, such as
perturbation theory, several schemes of mean-field the-
ory, renormalization group, and determinantal quantum
Monte Carlo simulation [36], can be starightforwardly
extended to paraparticles, allowing one to theoretically
study these interacting phases of matter.

Our paraparticle theory is well-defined in higher di-
mensions, so it is natural to consider their potential re-
alization in higher dimensional quantum spin systems.
Note that an essential ingredient in finding the exactly
solvable 1D realization presented above is the MPO JWT
in Eq. (18) [37]. Can we generalize the MPO JWT to
higher dimensions to realize paraparticles in higher di-
mensional spin models? This has been done for fermions:
any local Hamiltonian of fermions on a lattice can be
mapped to a locally interacting quantum spin model of
the same dimension, by an extension of the ordinary
JWT [38]. This maps free fermion models to general-
ized Kitaev’s honeycomb models [39–41]. It is therefore

reasonable to expect that our MPO JWT (18) can also
be extended to higher dimensions, leading to higher di-
mensional quantum spin models realizing emergent (free)
paraparticles, in the same way as the generalized Kitaev
models hosting free fermions. One may also gain insights
into parastatistics in higher dimensions by constructing
Gutzwiller projected wavefunctions [42, 43] with parasta-
tistical partons as variational approximations of certain
higher dimensional spin models, using a representation
of spin operators in terms of paraparticle operators that
generalizes Schwinger’s boson and slave fermion repre-
sentation of SU(2).

In addition to the possibility of emergent parastatis-
tical excitations in interacting quantum matter, a natu-
ral, albeit highly speculative, question is to ask if para-
particles may exist as elementary particles in nature. We
have seen that our second quantized theory of paraparti-
cles satisfies the fundamental requirements of locality and
Hermiticity, and is consistently defined in all dimensions.
It is also straightforward to incorporate relativity to get
a fully consistent relativistic quantum field theory of el-
ementary paraparticles, in which the canonical quanti-
zation of field operators are defined by the R-CRs in
Eq. (6). Most fundamental field-theoretical concepts and
tools [44] generalize straightforwardly to parastatistics.

In order to consider usefully paraparticles as elemen-
tary particles, it is important to consider their superse-
lection rules. Superselection rules arise because the full
state space of our second quantized theory is a direct sum
of exponentially many subspaces, such that any physi-
cal observable has zero matrix element between states
of different subspaces. Each subspace is called a su-
perselection sector. An immediate consequence of the
superselection rules is that they forbid quantum transi-
tions (by any local unitary evolution) and thermalization
between different superselection sectors. If the system is
initialized in one sector, it will stay in that sector for-
ever. Therefore the correct thermodynamic description
of the system in equilibrium is through the partition func-

tion Zπ = Trπ[e
−βĤ ], where Trπ means summing over all

states in a specific sector π, and the result is generally
different from that in Fig. 2 obtained by averaging over
the whole space (all sectors). In our second quantized
theory of paraparticles, it can be shown that [24] the
thermal expectation values of all physical observables in
a specific sector are the same as some system of ordinary
fermions and bosons, meaning that paraparticles in our
second quantized theory cannot be distinguished from
ordinary particles by local measurements. This is rem-
iniscent of the famous Doplicher-Haag-Roberts (DHR)
no-go theorem [6], which states, roughly, that any given
superselection sector of a paraparticle system is equiva-
lent to a given fixed particle number sector of a system
of fermions and bosons. This problem does not arise for
emergent paraparticles in our quantum spin models de-
fined in Eq. (19), which have no such superselection rules,
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since any two states of the full Hilbert space can be con-
nected by some local spin operators {x̂±i,a, ŷ±i,a}. Adding
an infinitesimal perturbation by such operators will in-
duce thermalization between sectors without perturbing
the thermodynamic behavior, allowing the distinct ther-
modynamics of free paraparticles shown in Fig. 2 to be
physically observed. This is similar to how interactions
are necessary to thermalize an ideal gas.

The way emergent paraparticles in the quantum spin
models in Eq. (19) evade the conclusions of the DHR no-
go theorem gives us an important hint on the relevance
of parastatistics to elementary particles. Despite being
a rigorous mathematical result, the DHR no-go theorem
makes several technical assumptions on the physical sys-
tems being considered, one of which is the DHR condi-
tion [6, 20], which roughly assumes that all excitations
are created by local operators. Yet as we see in Eq. (18),
the quasiparticles in our spin models are created by non-
local string operators, thereby rendering inapplicable the
DHR theorem in a similar way as the anyonic excitations
in Kitaev’s toric code model [45, 46], whose creation op-
erators are attached by Z2 gauge strings. Although our
spin models are non-relativistic and limited to 1D, one
can potentially introduce other local observables in our
general second quantization formalism that are compat-
ible with causality and relativistic covariance but which
break the superselection rules, like {x̂±i,a, ŷ±i,a} in the spin
models. A promising direction is to consider paraparti-
cles coupled to gauge fields, as the DHR theorem does not
apply to quantum gauge theories [20], such as Kitaev’s
toric code model (Zn gauge theory) and Chern-Simons
theories [47], where anyons emerge.

We finally comment that the spin model Hamiltonian
in Eq. (17) is non-Hermitian but PT-symmetric if the
R-matrix is not Hermitian, as is the case for the R-
matrix in Ex. 4 (while other R-matrices in Tab. I are
Hermitian, leading to Hermitian spin models). We leave
here as an open question if the parastatistics in Ex. 4
is realizable in a Hermitian spin model. Alternatively,
since PT-symmetric Hamiltonians can still lead to uni-
tary quantum physics [48], it is interesting to conceive
an experimental platform that realizes the non-Hermitian
Hamiltonian in Eq. (17) for the R-matrix in Ex. 4.
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Methods

Derivations for Eqs. (8,9) The commutator between

êij and ψ̂±
k,b is

[êij , ψ̂
+
k,b] =

∑

a

(
ψ̂+
i,aψ̂

−
j,aψ̂

+
k,b − ψ̂+

k,bψ̂
+
i,aψ̂

−
j,a

)

=
∑

a

ψ̂+
i,a


∑

c,d

Rac
bdψ̂

+
k,cψ̂

−
j,d + δjkδab




−
∑

a

ψ̂+
k,bψ̂

+
i,aψ̂

−
j,a

=
∑

a,c,d

(Rac
bdψ̂

+
i,aψ̂

+
k,c)ψ̂

−
j,d + δjkψ̂

+
i,b

−
∑

a

ψ̂+
k,bψ̂

+
i,aψ̂

−
j,a

= δjkψ̂
+
i,b, (20)

where in the second (third) line we used the first (second)
line of Eq. (6). Similarly, we have

[êij , ψ̂
−
k,b] = −δikψ̂−

j,b. (21)

Now we can compute the commutator

[êij , êkl] =
∑

b

[êij , ψ̂
+
k,b]ψ̂

−
l,b +

∑

b

ψ̂+
k,b[êij , ψ̂

−
l,b]

=
∑

b

δjkψ̂
+
i,bψ̂

−
l,b −

∑

b

ψ̂+
k,bδilψ̂

−
j,b

= δjkêil − δilêkj , (22)

where in the second line we used Eqs. (20) and (21).
Calculation of the exclusion statistics and single mode

partition functions We here present the calculation of
the numbers {dn}n≥0 for the R-matrices in Exs. 1-4. To
this end, we need to solve Eq. (10) for each R-matrix
and for each particle number n. Note that Eq. (10) does
not put any restriction on Ψ for n = 0 and n = 1,
so we have d0 = 1, d1 = m for all the four families
of R-matrices. The physical meaning of this is clear:
we always have one vacuum state |0⟩, and m degener-
ate single particle states. For the R-matrix in Ex. 1,
Eq. (10) sets the requirement that Ψa1a2...an

is antisym-
metric under the exchange of any two neighboring in-
dices, e.g., Ψa1a2...an = −Ψa2a1...an . Therefore for each
n, Ψ has

(
m
n

)
independent components, which can be cho-

sen to be {Ψa1a2...an
| 1 ≤ a1 < a2 < . . . < an ≤ m},

therefore, dn =
(
m
n

)
for 0 ≤ n ≤ m and dn = 0 for

n > m. For the R-matrix in Ex. 2, Eq. (10) still re-
lates an arbitrary component Ψa1a2...an

to an element
in {Ψa1a2...an | 1 ≤ a1 < a2 < . . . < an ≤ m}, al-
though potentially with a different sign factor, and we
still have Ψa1a2...an

= 0 if any two indices are equal.
This leads to the same dn as in Ex. 1. For the R-matrix

in Ex. 3, Eq. (10) becomes Ψa1a2...an
= −Ψa1a2...an

, lead-
ing to Ψ = 0 and therefore dn = 0 for any n ≥ 2.
For the R-matrix in Ex. 4, Eq. (10) with n = 2 gives
λab

∑
c,d ccdΨcd = 2Ψab, and since Tr[λcT ] = 2, this

equation has a unique solution Ψab = λab (up to a con-
stant factor), therefore d2 = 1. Moreover, Eq. (10) with
n = 3 implies Ψabc = λabϕc = ϕ′aλbc for some vectors
ϕ, ϕ′, which has no solution since λ is invertible, leading
to dn = 0 for n ≥ 3 (the case for n > 3 is proved by ap-
plying this argument to the first 3 indices of Ψa1a2...an

).
The single mode partition function zR(x) can be cal-

culated directly from the definition in Eq. (13), the re-
sults are given in Tab. I. In the mathematics litera-
ture zR(x) (where x = e−βϵ) is called the Hilbert se-
ries of the R-matrix [56]. There is a very useful iden-
tity relating the Hilbert series of the R-matrices R and
−R (note that −R also satisfies the YBE in Eq. (5) if
R does): zR(−x)z−R(x) = 1, which allows us to com-
pute the exclusions statistics {dn}n≥0 of −R if the ex-
clusions statistics of R is known. For example, for the
R-matrix in Ex. 4, we have z−R(x) = 1/(1 −mx + x2),
from which we obtain d0 = 1, d1 = m, d2 = m2 − 1, and
dn+1 = mdn − dn−1 for n ≥ 1.

Exact Solution of free paraparticles Here we present
details for solving the general bilinear Hamiltonian in
Eq. (14). Analogous to usual free bosons and fermions,

we consider U(N) transformations of {ψ̂±
i,a}:

ψ̂−
i,a =

N∑

k=1

U∗
kiψ̃

−
k,a,

ψ̂+
i,a =

N∑

k=1

Ukiψ̃
+
k,a, (23)

where Uki is an N × N unitary matrix, and we use op-
erators with a tilde ψ̃±

k,a to denote eigenmode operators.
Inserting Eq. (23) into Eq. (6), we see that the operators

{ψ̃±
k,a} satisfy exactly the same CRs as {ψ̂±

i,a}. Notice
that most of our discussions regarding the second quan-
tization formulation and the state space only assume the
CRs in Eq. (6), so the results obtained for {ψ̂±

i,a} (in
particular the Lie algebra of bilinear operators and the
structure of the state space) must also apply to {ψ̃±

k,a}.
Inserting Eq. (23) into Eq. (14), the Hamiltonian is

Ĥ =
∑

1≤k,p≤N
1≤i≤m

h′kpψ̃
+
k,aψ̃

−
p,a ≡

∑

1≤k,p≤N

h′kpẽkp, (24)

where h′kp =
∑

1≤i,j≤N UkihijU
∗
pj = [UhU†]kp. We can

therefore choose the unitary matrix U to diagonalize the
Hermitian coefficient matrix hij , with real eigenvalues
{ϵk}Nk=1, and the Hamiltonian becomes diagonal as in
Eq. (15).

We now calculate physical observables at temperature
T . The partition function is a product of single-mode
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partition functions in Eq. (13)

Z(β) ≡ Tr[e−βĤ ] =
∏

k

zR(e
−βϵk), (25)

so the free energy is

F (β) = − 1

β
lnZ(β) = − 1

β

∑

k

ln zR(e
−βϵk). (26)

The partition function allows us to compute the thermal
average of n̂lk

⟨ñlk⟩β =
Tr[ñlke

−βĤ ]

Tr[e−βĤ ]
=

(x∂x)
lzR(x)

zR(x)

∣∣∣∣
x=e−βϵk

. (27)

and

⟨ẽkp⟩β = δkp ⟨ñk⟩β . (28)

The thermal average for physical operators êij are ob-
tained by transforming creation and annihilation opera-
tors to the eigenmode basis using Eq. (23), and using the
result for ⟨ẽkp⟩β given in Eq. (28), which yields

⟨êij⟩β =
∑

k

UkiU
∗
kj⟨ñk⟩β . (29)

Observables that are products of {êij} (or {ẽkp}) can be
calculated using the Lie algebra relations in Eq. (9) and
the result for ⟨ẽkp⟩β . For example, the thermal expec-
tation value of quadratic products of {êij} (e.g. êij êji
and n̂in̂j) can always be written as linear combinations
of ⟨ẽkpẽpk⟩β , which can be obtained as follow. First, we

have

⟨ẽkpẽpk⟩β =
1

Z
Tr[ẽkpẽpke

−βĤ ]

=
1

Z
Tr[ẽpke

−βĤ ẽkp]

= ⟨ẽpkẽkp⟩βeβ(ϵp−ϵk), (30)

where in the last line we used [Ĥ, ẽkp] = (ϵk− ϵp)ẽkp. On
the other hand, using Eq. (9), we have

⟨ẽkpẽpk⟩β − ⟨ẽpkẽkp⟩β ≡ ⟨[ẽkp, ẽpk]⟩β
= ⟨ñk⟩β − ⟨ñp⟩β . (31)

Combining Eqs. (30) and (31), for p ̸= k, we get

⟨ẽkpẽpk⟩β =
⟨ñk⟩β − ⟨ñp⟩β
1− eβ(ϵk−ϵp)

. (32)

The expression for p = k can be obtained from Eq. (27)
by setting l = 2. Higher order products of {ẽkp} can be
obtained in a similar way, using the structure of the Lie
algebra glN , which fulfills a role for paraparticles analo-
gous to Wick’s theorem. We can also calculate the un-
equal time correlators between physical observables, for
example

⟨[n̂i(t), n̂j(0)]⟩β =
∑

k,p

UkiU
∗
piU

∗
kjUpj⟨ñk − ñp⟩βeit(ϵk−ϵp),

(33)
which is obtained by expanding n̂i(t) and n̂j(0) as linear
combinations of ẽkp and then using Eq. (32).
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This Supplementary Information fills in several tech-
nical details omitted in the main text. In Sec. S1 we de-
fine a Hermitian inner product on the state space which
guarantees the Hermiticity of Hamiltonians and physical
observables. In Sec. S2 we present the detailed construc-
tion of the state space and prove the linear independence
of the basis states constructed in Eq. (11). In Sec. S3
we provide mathematical details on the 1D spin model
defined in Eqs. (17-19).

S1. PROOF OF HERMITICITY

We now prove our claim in the main text that the
Hermitian conjugate † can be consistently defined on the

states and operators such that e†ij = êji, for 1 ≤ i, j ≤ N ,
which guarantees Hermiticity of Hamiltonians and uni-
tarity of quantum time evolution. To define the Hermi-
tian conjugate † of operators, we need to define a Hermi-
tian inner product ⟨. . . | . . .⟩ on the state space, and then

the Hermitian conjugate of an operator Ô is defined as
⟨Ψ|Ô†Φ⟩ ≡ ⟨ÔΨ|Φ⟩, for any states |Ψ⟩, |Φ⟩. In the fol-
lowing we first show that such an inner product can be
consistently defined on the state space such that the in-

duced Hermitian conjugate † satisfies e†ij = êji, ∀i, j, and
then give a more explicit definition of this inner product.

To begin, we first notice that, with the CRs in Eq. (9),
the set of operators {êij + êji, i(êij − êji)|1 ≤ i, j ≤ N}
spans a closed Lie algebra uN ∼= suN ⊕ u1 (over the field

of real numbers R), where the u1 part is n ≡ ∑N
i=1 êii,

and the suN part is spanned by {êij + êji, i(êij − êji)|1 ≤
i < j ≤ N} along with {êii − êi+1,i+1|1 ≤ i ≤ N − 1}.
We now invoke the following theorem whose proof can be
found in Ref. [1]

Theorem 1. For each representation ρ of a compact
semisimple real Lie algebra g on a finite dimensional C-
vector space V , there exists a Hermitian inner product
on V such that all ρ(x)(x ∈ g) are Hermitian.

Since suN is a compact semisimple real Lie algebra,
Thm. 1 guarantees the existence of a Hermitian inner
product such that {êij + êji, i(êij − êji)|1 ≤ i < j ≤ N}
and {êii − êi+1,i+1|1 ≤ i ≤ N − 1} are all Hermitian, as
long as the state space is finite dimensional. But even if
the state space is infinite dimensional, we will see later
that the full state space can always be decomposed as
a direct sum of finite dimensional irreducible represen-
tations (irreps) of suN , and Thm. 1 still applies to each

irrep. As for the u1 part, since n is proportional to the
identity operator in each irrep, with the proportional-
ity constant being the total particle number, it follows
that n is also Hermitian. Since Thm. 1 implies that

êij + êji = ê†ij + ê†ji and i(êij − êji) = −i(ê†ij − ê†ji),

it follows that ê†ij = êji, for all 1 ≤ i, j ≤ N .
The Hermitian inner product on the state space can be

defined more explicitly as follows. The state space con-
structed in Eqs. (10-12) decomposes into a direct sum of
different particle number sectors, and n̂ is proportional to
identity in each sector. Each particle number sector fur-
ther decomposes into a direct sum of irreps of suN . We
set ⟨Ψ|Φ⟩ = 0 if |Ψ⟩, |Φ⟩ lie in different irreps (i.e., in-
equivalent irreps or different copies of equivalent irreps)
of suN . In this way, n is automatically Hermitian (in-
deed, it is real and diagonal) and the problem reduces to
defining ⟨. . . | . . .⟩ within each irrep of suN .

We now show that within each irrep, the inner product
between any two states is uniquely determined (up to a

multiplicative factor) by the requirement ê†ij = êji, ∀i, j.
We show this in the framework of highest weight the-
ory [2]. For every finite-dimensional irrep V of a finite-
dimensional semisimple Lie algebra g, there exists a
unique (up to a multiplicative constant) highest weight
vector |Λ⟩ (a |Λ⟩ that is annihilated by all positive root
operators êα|Λ⟩ = 0), and all other weight vectors |Λ′⟩
in V can be constructed by applying negative root oper-
ators on |Λ⟩, i.e. |Λ′⟩ =

∏
α ê−α|Λ⟩, where the product

is over some ordered set of positive roots. For the case
of suN , positive root operators are {êij |1 ≤ i < j ≤ N},
negative root operators are {êji|1 ≤ i < j ≤ N}, while
{êii − êi+1,i+1|1 ≤ i ≤ N − 1} spans the Cartan subalge-
bra. Without loss of generality we can assume ⟨Λ|Λ⟩ = 1.
Then for any two weight vectors |Λ1⟩, |Λ2⟩ ∈ V , their in-
ner product can be calculated as

⟨Λ1|Λ2⟩ =
∏

α,β

⟨Λ|ê†−β ê−α|Λ⟩

= ⟨Λ|
∏

α,β

êβ ê−α|Λ⟩, (S1)

and the last line can be calculated by using the CRs
between êβ and ê−α (to move all the positive root oper-
ators êβ to the right). Notice that there may be several
different ways to represent |Λ1,2⟩ in the form

∏
α ê−α|Λ⟩,

and consequently there are different ways to compute the
same inner product ⟨Λ1|Λ2⟩. Thm. 1 guarantees that all
the different ways of computing ⟨Λ1|Λ2⟩ give the same
result.
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S2. MATHEMATICAL DETAILS ON
STRUCTURE OF STATE SPACE

In this section we present the detailed construction of
the state space on a rigorous mathematical level, and
prove several claims we made in the main text. Specifi-
cally, we will (1) rigorously define the state space and the

action of ψ̂±
i,b on it; (2) prove that the basis states con-

structed in Eq. (11) are linearly independent [Note the
difference between the objectives (1) and (2) and that
of Sec. S1: the latter studies the structure of the state
space as a representation of the Lie algebra generated
by the êijs, which tells us the action of êij on the state
space. However, results of Sec. S1 do not define the ac-

tion of ψ̂±
i,b, and they do not tell us how to determine the

structure of the full state space (e.g. the exclusion statis-
tics and the partition function) from the R-matrix. The
objectives (1) and (2) in this section solve these issues
rigorously.]. We will also show the relation between the
second and the first quantization formulation.

We begin by introducing some notations. Denote by
XR,N the unital associative algebra over C generated

by {ψ̂±
i,b|1 ≤ i ≤ N, 1 ≤ b ≤ m} modulo all the re-

lations in Eq. (6). Define X+
R,N as the (unital) subal-

gebra of XR,N generated by all the creation operators

{ψ̂+
i,b|1 ≤ i ≤ N, 1 ≤ b ≤ m}, and similarly X−

R,N

the (unital) subalgebra of XR,N generated by all the an-

nihilation operators {ψ̂−
i,b|1 ≤ i ≤ N, 1 ≤ b ≤ m}.

An important observation is that the algebra XR,N can
be obtained from XR,1 as

XR,N
∼= XΠ⊠R,1, (S2)

where Π⊠R is the direct product R-matrix defined as

(Π⊠R)AB
CD ≡ Πij

klR
ab
cd, (S3)

where we group the spatial index i = 1, 2, . . . , N and

the internal index a in ψ̂±
i,a into a single collective index:

A = (i, a), B = (j, b), C = (k, c) and D = (l, d). Π acts

on the spatial part defined as Πij
kl = δilδjk, and R acts

on the internal part. It is straightforward to check that
Π⊠R constructed this way also satisfies the YBE Eq. (5),
and Eq. (S2) can be checked by comparing the defining
CRs of both sides. For this reason, in Secs. S2A and
S2B we focus on the algebra XR ≡ XR,1, but keep in
mind that any claim we make on XR applies equally well
to XR,N by using the product R-matrix Π⊠ R. We will

omit the mode labels i, j and simply write ψ̂±
a when there

is no confusion.

A. Existence and uniqueness of vacuum state from
physical requirements

For the theory to make physical sense, the spectrum of
the total particle number operator n̂ should be bounded

from below. This means that there exists at least one
state |nmin⟩ with the smallest eigenvalue nmin of n̂. Since

ψ̂−
a decreases the eigenvalue of n̂ by 1, the minimality

of nmin requires that ψ̂−
a |nmin⟩ = 0,∀a, since otherwise

ψ̂−
a |nmin⟩ would be an eigenstate of n̂ with eigenvalue

nmin−1 < nmin. Therefore n̂|nmin⟩ =
∑

a ψ̂
+
a ψ̂

−
a |nmin⟩ =

0, i.e., nmin = 0. We call this state the vacuum state,
denoted by |0⟩.
It can be proven that in an irrep V of XR, the vacuum

state must be unique. Here is a sketch of the proof by
contradiction: assume there exists two linearly indepen-
dent vacuum states, say |0⟩, |0′⟩ ∈ V . Then V0 = X+

R |0⟩
would be invariant under the action of XR. To prove
this, it is enough to show that V0 is invariant under all

the generators ψ̂±
a of XR: ψ̂

+
a leaves V0 invariant since

ψ̂+
a X+

R ⊆ X+
R , while ψ̂−

a X+
R ⊆ X+

R ψ̂
−
a + X+

R according to

the first relation in Eq. (6), so ψ̂−
a V0 ⊆ V0. Therefore, V0

is a subrepresentation of V . Furthermore, |0′⟩ /∈ V0 since
the only state in V0 annihilated by n̂ is |0⟩. Therefore,
V0 is a proper subrepresentation of V , contradicting the
irreducibility of V .

B. The state space generated by |0⟩ and {ψ̂+
a }

The algebra XR is the special case of the quantumWeyl
algebras (QWAs) Am(R) studied in Ref. [3] with q = 1,

by identifying xa with ψ̂+
a and ∂a with ψ̂−

a , and Thm. 1.5
in Ref. [3] provides the rigorous mathematical foundation
for the construction of state space:

Theorem 2. (Thm. 1.5 in Ref. [3]) There is a vec-

tor space isomorphism CR⟨ψ̂+
a ⟩ ⊗ CR⟨ψ̂−

a ⟩ ∼= XR, where

CR⟨ψ̂+
a ⟩ is the unital associative algebra generated by

{ψ̂+
b |1 ≤ b ≤ m}, subject to the second relations in

Eq. (6), and similarly CR⟨ψ̂−
a ⟩ is the unital associative

algebra generated by {ψ̂−
b |1 ≤ b ≤ m}, subject to the

third relations in Eq. (6).

This theorem extends the simpler fact that, as a vector
space, XR is spanned by X+

R⊗X−
R , since for any monomial

of ψ̂+
1 , . . . , ψ̂

+
m, ψ̂

−
1 , . . . , ψ̂

−
m in XR (e.g. ψ̂−

a ψ̂
+
b ψ̂

−
c ψ̂

+
d ), one

can always use the first relation in Eq. (6) to “normal

order” all ψ̂+
a s to the left and ψ̂−

a s to the right, leading
to a sum of terms, each with at most m creation and
m annihilation operators. The non-trivial aspect of this

theorem is that X+
R

∼= CR⟨ψ̂+
a ⟩, and X−

R
∼= CR⟨ψ̂−

a ⟩, i.e.
the relations in the first and third lines of Eq. (6) do not

imply any additional relations on the ψ̂+
a s other than the

second line in Eq. (6). See Ref. [3] for a detailed proof.
We now construct the state space as the representation

space of XR, defined as the canonical left XR-module

V = XR/[
∑

a XRψ̂
−
a ] (i.e. the left XR-module generated

by a vacuum state |0⟩ satisfying the relation ψ̂−
a |0⟩ = 0

for all a). Then Thm. 2 immediately implies that (see
the comment at the end of Sec. 1 in Ref. [3]), as a vector
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space, V = XR|0⟩ = X+
R |0⟩ ∼= CR⟨ψ̂+

a ⟩. Furthermore,
Thm. 3.2 of Ref. [3] proves that the representation V of
XR is irreducible, and our discussion in Sec. S2A implies
that it is the only irrep of XR with the spectrum of n
bounded from below.

In the following we find a basis for the state space
V ≡ X+

R |0⟩. We use the eigenvalues of the particle num-
ber operator n̂ to decompose V into a direct sum of
eigenspaces of n̂: V =

⊕
n≥0 Vn. Each subspace Vn

is spanned by states with fixed particle number

Vn = span{ψ̂+
a1
ψ̂+
a2
. . . ψ̂+

an
|0⟩|1 ≤ aj ≤ m, j = 1, 2, . . . , n}.

(S4)
Notice, however, due to the CR in Eq. (6), the states
defined in the RHS of Eq. (S4) are linearly depen-

dent. For example, the state ψ̂+
a ψ̂

+
b |0⟩ is the same as∑

c,dR
cd
abψ̂

+
c ψ̂

+
d |0⟩. A linearly independent basis for Vn

is established by the following theorem:

Theorem 3. The states {|n, α⟩}dn
α=1 defined by Eqs. (10-

12) (for the case N = 1) form a complete, linearly inde-
pendent basis for Vn.

We now sketch the proof of Thm. 3. Following our
discussion in the previous paragraph, the n-particle space
Vn of a single mode [defined in Eq. (S4)] can be identified

with C(n)
R ⟨ψ̂+

a ⟩, the subspace of CR⟨ψ̂+
a ⟩ spanned by all

degree n monomials in ψ̂+
a s. So it remains to be proven

that C(n)
R ⟨ψ̂+

a ⟩ is isomorphic (as a vector space) to the
space of solutions Ψa1...an

to Eq. (10). For convenience,
we define a product vector space A ≡ a⊗n, where a is an
m-dimensional vector space with basis {v1, v2, . . . , vm}.
The tensor Rab

cd defines a linear map R in the product
space a ⊗ a as R(vc ⊗ vd) =

∑
abR

ab
cdva ⊗ vb, and this

action is extended to a⊗n as

Rj,j+1 = 1
(1)

⊗ . . .⊗ 1
(j−1)

⊗ R
(j,j+1)

⊗ 1
(j+2)

⊗ . . .⊗ 1
(n)
. (S5)

Furthermore, we can associate a tensor Ψa1...an to a vec-
tor in a⊗n through Ψ =

∑
a1...an

Ψa1...an
va1

⊗ va2
⊗ . . .⊗

van
. Then Eq. (10) is equivalent to

Rj,j+1Ψ = Ψ (in a⊗n), j = 1, 2, . . . , n− 1. (S6)

In short, we need to prove that C(n)
R ⟨ψ̂+

a ⟩ is isomor-
phic (as a vector space) to the common eigenspace (with
eigenvalue +1) of all Rj,j+1. We have, as a vector space,

C(n)
R ⟨ψ̂+

a ⟩ ∼=
a⊗n

⊕n−1
j=1 (1−Rj,j+1)a⊗n

, (S7)

since CR⟨ψ̂+
a ⟩ is, by definition, isomorphic to the quotient

of the tensor algebra T (a) over the quadratic relations
R(a ⊗ a) = (a ⊗ a) [4], where a is an m-dimensional
vector space. We now prove the following lemma:

Lemma 4. Let R1, R2, . . . , Rk be Hermitian matrices
satisfying R2

j = 1, j = 1, 2, . . . , k, acting on a vector

space V . Then

span{|ψ⟩ ∈ V | Rj |ψ⟩ = |ψ⟩, 1 ≤ j ≤ k} ∼= V
⊕k

j=1(1−Rj)V
.

(S8)

Proof. For a Hilbert space H, and a subspace H1 ⊆ H,
the quotient space H/H1 is isomorphic to the orthogonal
complement H⊥

1 . Therefore we have

V
⊕k

j=1(1−Rj)V
= [

k⊕

j=1

(1−Rj)V ]⊥

=
k⋂

j=1

[(1−Rj)V ]⊥

=
k⋂

j=1

[(1+Rj)V ], (S9)

where in the second line we used (V1⊕V2)⊥ = V ⊥
1 ∩V ⊥

2 ,
and in the third line we used the fact that Rj is Hermitian
and all its eigenvalues are ±1. Note that (1 + Rj)/2 is
the projector to the eigenspace of Rj with eigenvalue +1,
therefore, the last line of Eq. (S9) is the same as the LHS
of Eq. (S8).

Although the R-matrices in our models are not always
Hermitian, there always exists a Hermitian inner product
on the space A = a⊗n with respect to which the matrices
{Rj,j+1}n−1

j=1 are all Hermitian. This is because any finite-
dimensional representation of a finite group is isomorphic
to a unitary representation (Theorem 4.6.2 in Ref. [5]),
and in our case the matrices {Rj,j+1}n−1

j=1 generate the

finite group Sn (notice that if Rj,j+1 is unitary then it is
Hermitian since R2

j,j+1 = 1). Therefore, Lemma 4 still
applies, implying that the RHS of Eq. (S7) is isomorphic
to the common eigenspaces of {Rj,j+1}n−1

j=1 defined by

Eq. (10). This concludes the proof of Thm. 3.

C. Many particle state space

We now prove that the states defined in Eqs. (10-12)
form a linearly independent basis for the many particle
state space X+

R,N |0⟩ for any positive integer N . We need
the following lemma:

Lemma 5. There is a vector space isomorphism XR,N
∼=

X⊗N
R . In particular, XR is isomorphic to the subalgebra

of XR,N generated by {ψ̂±
i,a|1 ≤ a ≤ m}, for any a ∈

{1, 2, . . . , N}.
Proof. By Thm. 2, we have (as vector spaces) XR

∼=
CR⟨ψ̂+

a ⟩⊗CR⟨ψ̂−
a ⟩, and XR,N

∼= CΠ⊠R⟨ψ̂+
a ⟩⊗CΠ⊠R⟨ψ̂−

a ⟩,
so we only need to prove that (as a vector space)

CΠ⊠R⟨ψ̂+
a ⟩ ∼= CR⟨ψ̂+

a ⟩⊗N . This can be proven by in-
duction on N , where the induction step N → N + 1 can
be proven in a similar way as Thm. 2. Alternatively,



4

it is straightforward to show that hΠ⊠R(x) = hR(x)
N ,

and since for every R-matrix, dimCR⟨ψ̂+
a ⟩ = hR(1), we

have dimCΠ⊠R⟨ψ̂+
a ⟩ = hR(1)

N = dimCR⟨ψ̂+
a ⟩⊗N , so as

a vector space, CΠ⊠R⟨ψ̂+
a ⟩ ∼= CR⟨ψ̂+

a ⟩⊗N .

While Lemma 5 seems natural, the non-trivial part is

that the CRs (6) involving any other modes ψ̂±
j,a (with

j ̸= i) do not give rise to any additional algebraic rela-

tions on {ψ̂±
i,a|1 ≤ a ≤ m}. This is a rigorous justification

that different modes are mutually independent. Lemma 5
along with Thm. 3 immediately imply that the states de-
fined in Eqs. (10-12) form a linearly independent basis
for X+

R,N |0⟩.

D. The relation between the second and the first
quantization formulation

We now show the relation between the second quan-
tized formulation of parastatistics and the first quantized
wavefunction formulation. To this end we first show the
relation between the R-matrix Rab

cd and the coefficients
(Rj,j+1)

I
J appearing in Eq. (3). Let the index I (and

similarly for J) be a collection of n auxiliary indices
I = (a1, a2, . . . , an) labeling the basis states of a product
vector space A ≡ a⊗n (the internal space of wavefunc-
tions), where the basis of a is {v1, v2, . . . , vm}. Now let
(Rj,j+1)

I
J be the matrix element of the linear mapping

defined in Eq. (S5). With this choice of Rj,j+1, Eq. (3)
becomes (take n = 3 and j = 1 for example)

Ψa1a2a3(x2, x1, x3) =
∑

b1,b2

Ra1a2

b1b2
Ψb1b2a3(x1, x2, x3).

(S10)
Then all the relations in Eq. (4) reduce to Eq. (5). An iso-
morphism between the space of n-particle wavefunctions
in the first quantization formulation and the subspace
of n-particle states in the second quantization formula-
tion is defined as follows: each n-particle wavefunction
ΨI(x1, . . . , xn) satisfying Eq. (3) [with the R-matrix in
Eq. (S5)] corresponds to the n-particle state

|Ψ⟩ =
∑

I,x1,...,xn

ΨI(x1, . . . , xn)ψ̂
+
x1,a1

. . . ψ̂+
xn,an

|0⟩,

(S11)
That Eq. (S11) indeed defines an isomorphism between
the two vector spaces can be seen as follows. Note that
Eq. (10) and Eq. (11) (for the case N = 1) with the R-
matrix Π⊠R is the same as Eq. (3) and Eq. (S11) with the
R-matrix R, respectively. Then Thm. 3 applied to the
algebra XΠ⊠R

∼= XR,N shows that a linearly independent
basis for the space of n-particle wavefunctions satisfying
Eq. (3) correspond to a linearly independent basis for
the n-particle subspace Vn of the Fock space X+

Π⊠R|0⟩ ∼=
X+

R,N |0⟩ via the relation Eq. (S11), thereby establishing
the isomorphism.

S3. DETAILS ON THE 1D SPIN MODEL AND
THE MPO JWT

In this section we provide mathematical details on the
1D spin model defined in Eqs. (17-19).

A. Model definition for an arbitrary R-matrix

We first define the local spin operators {x̂±i,a, ŷ±i,a}ma=1

that appears in the Hamiltonian in Eq. (17), for any given
R-matrix. They are constructed to satisfy the following
algebraic relations (we omit the site label i since they all
act locally on the same site)

ŷ−a ŷ
+
b =

∑

c,d

Rac
bd ŷ

+
c ŷ

−
d + δab

ŷ+a ŷ
+
b =

∑

c,d

Rcd
abŷ

+
c ŷ

+
d

ŷ−a ŷ
−
b =

∑

c,d

Rba
dcŷ

−
c ŷ

−
d

x̂−a x̂
+
b =

∑

c,d

Rca
dbx̂

+
c x̂

−
d + δab

x̂+a x̂
+
b =

∑

c,d

Rdc
bax̂

+
c x̂

+
d

x̂−a x̂
−
b =

∑

c,d

Rab
cdx̂

−
c x̂

−
d

[x̂+a , ŷ
+
b ] = [x̂−a , ŷ

−
b ] = 0. (S12)

While these CRs superficially resemble the CRs between
paraparticle operators in Eq. (6), the difference is that
the spin operators here are strictly local in that they
commute on different sites, and therefore are in principle
realizable, while the paraparticle operators are generally
non-local operators. These CRs are shown graphically in
Fig. S2.

We now define a local Hilbert space and a matrix
representation of these local spin operators. Notice
that the first three CRs in Eq. (S12) are exactly the
same as in Eq. (6) for N = 1, therefore we can take

V = X+
R |0⟩ ∼= CR⟨ψ̂+

a ⟩ to be the local Hilbert space
of the spin model [6], where the action of {ŷ±a }ma=1 is

defined by ŷ±a |Ψ⟩ = ψ̂±
a |Ψ⟩, ∀|Ψ⟩ ∈ V. The action

of {x̂+a }ma=1 on V is defined by x̂+a (ψ̂
+
b1
ψ̂+
b2
. . . ψ̂+

bn
|0⟩) =

ψ̂+
b1
ψ̂+
b2
. . . ψ̂+

bn
ψ̂+
a |0⟩ ∈ X+

R |0⟩, for any ψ̂+
b1
ψ̂+
b2
. . . ψ̂+

bn
|0⟩ ∈

X+
R |0⟩. The action of {x̂−a }ma=1 on V is defined by

x̂−a (ψ̂
+
b1
ψ̂+
b2
. . . ψ̂+

bn
|0⟩) = x̂−a x̂

+
bn
x̂+bn−1

. . . x̂+b1 |0⟩, where it is
understood that the RHS is simplified by moving x̂−a all
the way to the right using the fourth relation in Eq. (S12);

for example, x̂−a (ψ̂
+
b ψ̂

+
c |0⟩) = x̂−a x̂

+
c x̂

+
b |0⟩ = (δacx̂

+
b +∑

dR
da
bc x̂

+
d )|0⟩ = (δacψ̂

+
b +

∑
dR

da
bc ψ̂

+
d )|0⟩ ∈ X+

R |0⟩. It is
straightforward to check that the action of {x̂±a , ŷ±a }ma=1

defined this way satisfy all the relations in Eq. (S12).
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FIG. S1. The action of the operators x̂±a , ŷ
±
a and n̂ on the

basis states |0⟩, {|1, b⟩}mb=1, |2⟩, for the spin model correspond-
ing to the R-matrix in Ex. 4.

Furthermore, we note that this definition implies the ad-
ditional CRs

∑

a

x̂+a x̂
−
a =

∑

a

ŷ+a ŷ
−
a ≡ n̂,

[n̂, x̂±a ] = ±x̂±a , [n̂, ŷ±a ] = ±ŷ±a . (S13)

The Hilbert space of the whole system with N sites in
total is V⊗N , and {x̂±i,a, ŷ±i,a}ma=1 act locally on the i-th
factor space as described above.

We can give the matrix elements of {x̂±a , ŷ±a }ma=1 more
explicitly for the R-matrices given in Tab. I. One finds
that for the R-matrices in Ex. 1 and Ex. 2, the corre-
sponding spin models are simply m decoupled chains of
1DXY models (up to an on-site unitary transformation).
The spin model for the R-matrix in Ex. 3 has been pre-
sented in the main text. For the R-matrix in Ex. 4, the
local Hilbert space V is m + 2-dimensional, with basis
states |0⟩, {|1, b⟩}mb=1, |2⟩; the non-zero matrix elements of
ŷ±a are ŷ+a |0⟩ = |1, a⟩, ŷ−a |1, b⟩ = δab|0⟩, ŷ+a |1, b⟩ = cab|2⟩,
and ŷ−a |2⟩ =

∑
b λab|1, b⟩; and the non-zero matrix el-

ements of x̂±a are x̂+a |0⟩ = |1, a⟩, x̂−a |1, b⟩ = δab|0⟩,
x̂+a |1, b⟩ = cba|2⟩, and x̂−a |2⟩ =

∑
b λba|1, b⟩. The action

of the operators x±i , ŷ
±
i and n on the orthonormal basis

states are shown in Fig. S1.

The spin model Hamiltonian in Eq. (17) is not Her-
mitian for the R-matrix in Ex. 4 for m ≥ 3 [7], since

x̂+a ̸= (x̂−a )
†, ŷ+a ̸= (ŷ−a )

†. However, Ĥ is parity-time sym-
metric [8, 9], and therefore has real eigenvalues and gen-
erates unitary time evolution. To be precise, let P be the
parity operator that generates the chain reflection sym-
metry, and let T be the time-reversal symmetry, which, in
our spin model, is simply complex conjugation. Using the
explicit representation of the matrices λab, cab in Tab. I
and footnote [10], we see that λ∗ab = λba, c

∗
ab = cba, and

therefore, the time-reversal operation T simply swaps the
operators x̂±a ↔ ŷ±a in the Hamiltonian Ĥ, which can

subsequently be undone by P . Thus, Ĥ is invariant un-
der the combined operation PT , and all eigenvalues of Ĥ
are real (as already seen from the exact solution of the
spectrum).

FIG. S2. Graphical representation of the CRs between the
local spin operators {x̂±a , ŷ±a }ma=1 in Eq. (S12). The matrix
elements of each operator {x̂±a , ŷ±a }ma=1 is a tensor (represented
by the triangles) with two quantum indices (e.g. the indices
q1 and q2 shown in figure) and one auxiliary index (e.g. the
index a), and the R-matrix (represented by a square) is a
tensor with four auxiliary indices. Matrix multiplication goes
from top to bottom in the quantum space and from left to
right in the auxiliary space.

FIG. S3. Graphical representation of the CRs between the
local spin operators Ŝab, T̂ ab and {x̂±a , ŷ±a }ma=1.

B. Generalized Jordan-Wigner transformations

We now prove that the emergent paraparticles cre-
ation and annihilation operators defined by the MPO
JWT in Eq. (18) do satisfy the parastatistical CRs in
Eq. (6), and the spin Hamiltonian in Eq. (17) is mapped
to the free paraparticle Hamiltonian in Eq. (19). An im-
portant first step is to prove the algebraic relations be-
tween the local spin operators Ŝab, T̂ ab and {x̂±a , ŷ±a }ma=1

as shown graphically in Fig. S3. For the R-matrices given
in Tab. I, all these relations can be explicitly checked
by hand, but to prove them for an arbitrary R-matrix,
we need to use some techniques of representation the-
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FIG. S4. The graphical proof of relations (S2.2) (right panel)
and (S2.5) (left panel) in Fig. S3.

ory. Here we show the proof of relations (2) and (5) as
examples, while others can be proven in a similar way.
First, it is straightforward to verify that the operators
Ŝ+ =

∑
a x̂

+
1aŷ

−
2a, Ŝ

− =
∑

a x̂
−
1aŷ

+
2a, Ŝ

z = (n̂1 − n̂2)/2
form a representation of the sl2 Lie algebra. This can be

checked by direct computation using Eqs. (S12,S13). In

addition, we have [Ŝ+, x̂−2a] = 0 and [Ŝz, x̂−2a] = x̂−2a/2,
so under the adjoint action of this sl2, x̂

−
2a is a highest

weight state with Sz = 1/2. The only finite dimensional
representation of sl2 corresponding to this highest weight
state is the spin-1/2 representation, in which we have

[Ŝ−, [Ŝ−, x̂−2a]] = 0. Relation (5) in Fig. S3 can be proven
by expanding this equation and using the fifth relation
in Eq. (S12), as shown in the left panel of Fig. S4. Then
relation (2) can be proven from relation (5) as shown in
the right panel of Fig. S4, using tensor graphical manip-
ulations.

With all those relations shown in Fig. S3, Eq. (6) can
be proven. For example, in Fig. S5 we show the proof of
the first parastatistical commutation relation in Eq. (6)

for the ψ̂±
i,a defined in terms of the spin operators in

Eq. (18) and the algebraic relations in Fig. S3. Other
relations in Eq. (6) are proven in a similar way. Further-
more, one can insert Eq. (18) into Eq. (19) to reproduce
Eq. (17), using the last two relations in Fig. S3 and a
similar graphical manipulation as in Fig. S5. This proves
the exact mapping from the 1D spin model to free para-
particles.
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